在回归分析浅析中篇的文章中,
有人问了一个问题:
案例里的calls数据貌似离散,更符合泊松模型,为啥不采用泊松而采用高斯呢?
确实,在中篇中写道:
在这个例子中我们为了更好地解释变量,使用高斯模型代替更适合的泊松模型。
这句话该怎么理解呢?
一般情况下,拿到研究数据之后,如果我们计划使用GLR工具,首先需要判断使用哪个模型,使用哪个模型是由数据来确定的,当数据都是整数时,究竟是用高斯还是泊松呢?
我们知道,高斯模型需要满足数据正态分布。在Pro中如何看数据是否正态分布呢?
打开Pro,在内容列表中选择包含因变量的原始图层,选择创建图表,点击直方图就可以查看数据的分布形态了。
在图表属性中选择数值变量为Calls
存在变换三种形式,无变换、对数变换以及平方根变换。默认情况下选择无变换。
其中横轴是Calls值,纵轴为Calls的数量