2022(一等奖)D926刘家峡库区潜在滑坡InSAR识别与分析

本文利用Sentinel-1A数据和SBAS-InSAR技术,监测2019-2022年间刘家峡库区地表形变,识别潜在滑坡。通过结合静态和动态因子,分析滑坡机理,并对两处典型滑坡进行时序分析。研究发现,二维InSAR形变数据能提高滑坡评估精度,共识别出15处潜在滑坡隐患。
摘要由CSDN通过智能技术生成

作品介绍

1 应用背景

滑坡是普遍存在于世界各地山区的主要灾害之一,严重威胁着人类的生命财产安全和自然环境。滑坡不但会直接破坏人类生命财产安全和建筑物,而且还会造成堰塞湖等次生灾害,进而对人类的生命财产安全和基础设施等造成二次破坏。滑坡也是发生次数最多、损失最大的地质灾害,西太平洋的日本、中国台湾省、青藏高原南缘喜马拉雅地区是亚洲滑坡灾害的高发区,我国也是世界上滑坡最为严重的地区之一。2021年,全国共发生地质灾害4772起,其中滑坡,滑坡2335起、崩塌1746起、泥石流374起、地面塌陷285起、地裂缝21起、地面沉降11起,滑坡占全年地质灾害总数的 48.93%。

合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar, InSAR)作为一项新的空间对地观测技术,具有全天候、全天时、范围广、间隔短;且形变探测精度达到厘米级甚至毫米级等优点,在大范围形变监测及滑坡普查中发挥着重要作用。Berardino等提出了多幅主影像组合的小基线集技术SBAS-InSAR(Small Baseline Subset Interferometric Synthetic Aperture Radar, SBAS-InSAR),通过设置短时空基线阈值的方法,组合得到较多的差分干涉对,从而提高干涉图的时空相干性,利用奇异值分解和最小二乘法求解时序形变,该技术在滑坡识别方面得到广泛应用。如戴可人等采用SBAS-In

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sky J

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值