1、统计量
1.1 定义
- 把分散在样本中我们关心的信息集中起来,针对不同的研究目的,构造不同的样本函数,这种函数在统计学中称为「统计量」;
- X 1 X_1 X1, X 2 X_2 X2, …, X n X_n Xn是从总体X中抽取的容量为 n n n的一个样本,如果由此样本构造一个函数 T ( X 1 , X 2 , . . . , X n ) T(X_1, X_2, ..., X_n) T(X1,X2,...,Xn),不依赖于任何未知参数,则称函数 T ( X 1 , X 2 , . . . , X n ) T(X_1, X_2, ..., X_n) T(X1,X2,...,Xn)是一个统计量。
1.2 常用统计量
- 在一般的概率论教材中,把数学期望及方差等概念用所谓“矩”的概念来描述;
- 当n充分大时,有定理可以保证经验分布函数 F n ( X ) F_n(X) Fn(X)很靠近总体分布函数 F ( X ) F(X) F(X)。因此经验分布函数的各阶矩就反映了总体各阶矩的信息。
- 通常把经验分布函数的各阶矩称为「样本各阶矩」
– 样本均值
– 样本方差
– 样本变异系数:标准差/样本均值
– 样本k阶矩
– 样本k阶中心矩
– 样本偏度
– 样本峰度
2、由正态分布导出的几个重要分布
- 统计推断的3个核心内容:抽样分布、参数估计、假设检验;
- 统计三大分布:卡方分布、t分布、F分布;学习链接:https://zhuanlan.zhihu.com/p/53463133
- 自由度:独立变量的个数;
- 总体分布为正态分布时,样本均值的抽样分布仍为正态分布,样本均值的数学期望为 u u u,方差为 σ 2 / n σ²/ n σ2/n;
- 用样本均值去估计总体均值时,平均来说没有偏差,这一点称为「无偏性」,当 n n n越来越大时,样本均值的散布程度越来越小,用样本均值估计总体均值越来越准确;
- 中心极限定理:设从均值为 u u u, 方差为 σ 2 σ² σ2(有限)的任意总体中抽取样本量为 n n n的样本,当 n n n充分大时,样本均值的抽样分布近似服从均值为 u u u,方差为 σ 2 / n σ²/ n σ2/n的正态分布;
- 在样本量固定的条件下所进行的统计推断、问题分析,不管样本量多大,都称为「小样本问题」,而在样本量趋于无穷的条件下进行的统计推断、问题分析则称为「大样本问题」;
- 一般在统计学中n>=30为大样本,n<30为小样本(经验说法)。
参考资料
[1] 贾俊平. (2018). 统计学 (第7版). 中国人民大学出版社.