统计学笔记(五)统计量及其抽样分布

1、统计量

1.1 定义

  • 把分散在样本中我们关心的信息集中起来,针对不同的研究目的,构造不同的样本函数,这种函数在统计学中称为「统计量」;
  • X 1 X_1 X1 X 2 X_2 X2, …, X n X_n Xn是从总体X中抽取的容量为 n n n的一个样本,如果由此样本构造一个函数 T ( X 1 , X 2 , . . . , X n ) T(X_1, X_2, ..., X_n) T(X1,X2,...,Xn),不依赖于任何未知参数,则称函数 T ( X 1 , X 2 , . . . , X n ) T(X_1, X_2, ..., X_n) T(X1,X2,...,Xn)是一个统计量。

1.2 常用统计量

  • 在一般的概率论教材中,把数学期望及方差等概念用所谓“”的概念来描述;
  • 当n充分大时,有定理可以保证经验分布函数 F n ( X ) F_n(X) Fn(X)很靠近总体分布函数 F ( X ) F(X) F(X)。因此经验分布函数的各阶矩就反映了总体各阶矩的信息
  • 通常把经验分布函数的各阶矩称为「样本各阶矩」
    – 样本均值
    – 样本方差
    – 样本变异系数:标准差/样本均值
    – 样本k阶矩
    – 样本k阶中心矩
    – 样本偏度
    – 样本峰度

2、由正态分布导出的几个重要分布

  1. 统计推断的3个核心内容:抽样分布、参数估计、假设检验
  2. 统计三大分布:卡方分布、t分布、F分布;学习链接:https://zhuanlan.zhihu.com/p/53463133
  3. 自由度:独立变量的个数;
  4. 总体分布为正态分布时,样本均值的抽样分布仍为正态分布,样本均值的数学期望为 u u u,方差为 σ 2 / n σ²/ n σ2/n
  5. 用样本均值去估计总体均值时,平均来说没有偏差,这一点称为「无偏性」,当 n n n越来越大时,样本均值的散布程度越来越小,用样本均值估计总体均值越来越准确;
  6. 中心极限定理:设从均值为 u u u, 方差为 σ 2 σ² σ2(有限)的任意总体中抽取样本量为 n n n的样本,当 n n n充分大时,样本均值的抽样分布近似服从均值为 u u u,方差为 σ 2 / n σ²/ n σ2/n的正态分布;
  7. 在样本量固定的条件下所进行的统计推断、问题分析,不管样本量多大,都称为「小样本问题」,而在样本量趋于无穷的条件下进行的统计推断、问题分析则称为「大样本问题」;
  8. 一般在统计学中n>=30为大样本,n<30为小样本经验说法)。

参考资料

[1] 贾俊平. (2018). 统计学 (第7版). 中国人民大学出版社.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值