EM算法推导及其收敛性证明

EM算法简介

EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代分为两步:E步,求期望;M步,求极大。

概率模型有时既含有观测变量,又含有隐变量或潜在变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计或贝叶斯法估计模型参数。但是当模型含有隐变量时,就不能简单地使用这种估计方法。EM算法就是含有隐变量的概率模型参数的极大似然估计法。

EM算法

观测数据表示为 Y = ( Y 1 , Y 2 … Y n ) T Y=(Y_1, Y_2\dots Y_n)^T Y=(Y1,Y2Yn)T,未观测数据表示为 Z = ( Z 1 , Z 2 … Z n ) T Z=(Z_1, Z_2\dots Z_n)^T Z=(Z1,Z2Zn)T,则观测数据的似然函数为
(1) P ( Y ∣ θ ) = ∑ Z P ( Z ∣ θ ) P ( Y ∣ Z , θ ) P(Y|\theta) = \sum_ZP(Z|\theta)P(Y|Z,\theta)\tag{1} P(Yθ)=ZP(Zθ)P(YZ,θ)(1)
考虑求模型参数 θ \theta θ的对数极大似然估计,即
(2) θ ^ = a r g max ⁡ θ log ⁡ P ( Y ∣ θ ) \hat{\theta} = arg \max_{\theta} \log P(Y|\theta)\tag{2} θ^=argθmaxlogP(Yθ)(2)
该问题没有解析解,只有通过迭代的方法求解。

EM算法首先选取参数的初值,记作 θ ( 0 ) \theta^{(0)} θ(0),然后通过如下步骤迭代计算参数的估计值,直至收敛。第 i i i次迭代参数的估计值为 θ ( i ) \theta^{(i)} θ(i)。EM算法的第 i + 1 i+1 i+1次迭代如下:

E步: 计算在模型参数 θ ( i ) \theta^{(i)} θ(i)下观测数据 y j y_j yj的概率。

M步: 计算模型参数的新估计值。

一般地,用 Y Y Y表示观测随机变量的数据, Z Z Z表示隐随机变量的数据。 Y Y Y Z Z Z连在一起称为完全数据,观测数据 Y Y Y又称为不完全数据。假设给定观测数据 Y Y Y,其概率分布是 P ( Y ∣ θ ) P(Y|\theta) P(Yθ),其中 θ \theta θ是需要估计的模型参数;不完全数据 Y Y Y的似然函数为 P ( Y ∣ θ ) P(Y|\theta) P(Yθ),对数似然函数 L ( θ ) = log ⁡ P ( Y ∣ θ ) L(\theta)=\log P(Y|\theta) L(θ)=logP(Yθ);假设 Y Y Y Z Z Z的联合概率分布是 P ( Y , Z ∣ θ ) P(Y,Z|\theta) P(Y,Zθ),那么完全数据的对数似然函数为 log ⁡ P ( Y , Z ∣ θ ) \log P(Y,Z|\theta) logP(Y,Zθ)

EM算法通过迭代求 L ( θ ) = log ⁡ P ( Y ∣ θ ) L(\theta)=\log P(Y|\theta) L(θ)=logP(Yθ)的极大似然估计,每次迭代包含两步:E步,求期望;M步,求极大化。

算法1:(EM算法)

输入:观测变量数据 Y Y Y,隐变量数据 Z Z Z,联合分布 P ( Y , Z ∣ θ ) P(Y,Z|\theta) P(Y,Zθ),条件分布 P ( Z ∣ Y , θ ) P(Z|Y,\theta) P(ZY,θ)

输出:模型参数 θ \theta θ

(1)选择参数的初值 θ ( 0 ) \theta^{(0)} θ(0),开始迭代;

(2)E步:记 θ ( i ) \theta^{(i)} θ(i)为第 i i i次迭代参数 θ \theta θ的估计值,在第 i + 1 i+1 i+1次迭代的E步,计算
(3) Q ( θ , θ ( i ) ) = E Z [ log ⁡ P ( Y , Z ∣ θ ) ∣ Y , θ ( i ) ] = ∑ Z ( log ⁡ P ( Y , Z ∣ θ ) ) P ( Z ∣ Y , θ ( i ) ) Q(\theta, \theta^{(i)}) = E_Z[\log P(Y,Z|\theta)|Y,\theta^{(i)}] = \sum_Z\Big(\log P(Y,Z|\theta)\Big)P(Z|Y,\theta^{(i)}) \tag{3} Q(θ,θ(i))=EZ[logP(Y,Zθ)Y,θ(i)]=Z(logP(Y,Zθ))P(ZY,θ(i))(3)
这里的 P ( Z ∣ Y , θ ( i ) ) P(Z|Y,\theta^{(i)}) P(ZY,θ(i))是在给定观测数据 Y Y Y和当前的参数估计 θ ( i ) \theta^{(i)} θ(i)下隐变量数据 Z Z Z的条件概率分布;

(3)M步:求使 Q ( θ , θ ( i ) ) Q(\theta, \theta^{(i)}) Q(θ,θ(i))极大化的 θ \theta θ,确定第 i + 1 i+1 i+1次迭代的参数估计值为 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)
(4) θ ( i + 1 ) = a r g max ⁡ θ Q ( θ , θ ( i ) ) \theta^{(i+1)} = arg \max_{\theta} Q(\theta, \theta^{(i)}) \tag{4} θ(i+1)=argθ

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值