EM 算法的收敛性证明

UTF8gbsn

如何证明EM算法的收敛性. EM算法的收敛性证明有两个点.

  1. P ( Y ∣ θ ) P(Y|\theta) P(Yθ),
    有上界,而 L ( θ t ) = l o g P ( Y ∣ θ t ) L(\theta^t)=logP(Y|\theta^t) L(θt)=logP(Yθt)收敛到某一个值 L ∗ L^{*} L

  2. EM算法的收敛序列 θ t \theta^{t} θt,收敛到 θ ∗ \theta^{*} θ L ( θ ) L(\theta) L(θ)的稳定点.

今天我们这里只证明第一点, 第二点留作后面来证明.

第一个定理

P ( Y ∣ θ t + 1 ) ⩾ P ( Y ∣ θ t ) P(Y|\theta^{t+1})\geqslant P(Y|\theta^t) P(Yθt+1)P(Yθt)

这个定理证明如下.

  1. 首先,由于 P ( Y ∣ θ ) = P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ) P(Y|\theta)=\frac{P(Y,Z|\theta)}{P(Z|Y,\theta)} P(Yθ)=P(ZY,θ)P(Y,Zθ) 可得
    L [ P ( Y ∣ θ ) ] = l o g P ( Y , Z ∣ θ ) − l o g P ( Z ∣ Y , θ ) L[P(Y|\theta)]=logP(Y,Z|\theta)-logP(Z|Y,\theta) L[P(Yθ)]=logP(Y,Zθ)logP(ZY,θ)

  2. 我们将 θ t \theta^t θt, 也即是我们上一步迭代求出来的估计参数引入. Q ( θ , θ t ) = ∑ i P ( Z i ∣ Y , θ t ) l o g P ( Z i , Y ∣ θ ) H ( θ , θ t ) = ∑ i P ( Z i ∣ Y , θ t ) l o g P ( Z i ∣ Y , θ ) \left. \begin{aligned} Q(\theta,\theta^t)&=\sum_iP(Z_i|Y,\theta^t)logP(Z_i,Y|\theta)\\ H(\theta,\theta^t)&=\sum_{i}P(Z_i|Y, \theta^t)logP(Z_i|Y,\theta) \end{aligned} \right. Q(θ,θt)H(θ,θt)=iP(ZiY,θt)logP(Zi,Yθ)=iP(ZiY,θt)logP(ZiY,θ)

  3. 上式两个相减可得. Q ( θ , θ t ) − H ( θ , θ t ) = ∑ i P ( Z i ∣ Y , θ t ) l o g P ( Z i , Y ∣ θ ) P ( Z i ∣ Y , θ ) = ∑ i P ( Z i ∣ Y , θ t ) l o g P ( Y ∣ θ ) = L [ P ( Y ∣ θ ) ] \left. \begin{aligned} Q(\theta,\theta^t)-H(\theta,\theta^t)&=\sum_{i}P(Z_i|Y,\theta^t)log \frac{P(Z_i, Y|\theta)}{P(Z_i|Y,\theta)}\\ &=\sum_{i}P(Z_i|Y,\theta^t)log P(Y|\theta)\\ &=L[P(Y|\theta)] \end{aligned} \right. Q(θ,θt)H(θ,θt)=iP(ZiY,θt)logP(ZiY,θ)P(Zi,Yθ)=iP(ZiY,θt)logP(Yθ)=L[P(Yθ)]

  4. 现在我们引入参数 θ t + 1 \theta^{t+1} θt+1. l o g P ( Y ∣ θ t + 1 ) − l o g P ( Y ∣ θ t ) = Q ( θ t + 1 , θ t ) − H ( θ t + 1 , θ t ) − Q ( θ t , θ t ) + H ( θ t , θ t ) = Q ( θ t + 1 , θ t ) − Q ( θ t , θ t ) − [ H ( θ t + 1 , θ t ) − H ( θ t , θ t ) ] \left. \begin{aligned} logP(Y|\theta^{t+1})-logP(Y|\theta^{t})&=Q(\theta^{t+1},\theta^t)-H(\theta^{t+1}, \theta^t)-Q(\theta^t,\theta^t)+H(\theta^t,\theta^t)\\ &=Q(\theta^{t+1},\theta^t)-Q(\theta^t,\theta^t)-[H(\theta^{t+1},\theta^t)-H(\theta^{t}, \theta^{t})] \end{aligned} \right. logP(Yθt+1)logP(Yθt)=Q(θt+1,θt)H(θt+1,θt)Q(θt,θt)+H(θt,θt)=Q(θt+1,θt)Q(θt,θt)[H(θt+1,θt)H(θt,θt)]

接下来,需要证明
Q ( θ t + 1 , θ t ) − Q ( θ t , θ t ) ⩾ 0 Q(\theta^{t+1},\theta^t)-Q(\theta^t,\theta^t)\geqslant 0 Q(θt+1,θt)Q(θt,θt)0
这个是显而易见的,
因为 θ t + 1 = arg ⁡ max ⁡ θ Q ( θ , θ t ) \theta^{t+1}=\arg\max_{\theta} Q(\theta, \theta^t) θt+1=argmaxθQ(θ,θt). 再接下来证明
H ( θ t + 1 , θ t ) − H ( θ t , θ t ) = ∑ i P ( Z i ∣ Y , θ t ) l o g P ( Z i ∣ Y , θ t + 1 ) P ( Z i ∣ Y , θ t ) ⩽ l o g ∑ i P ( Z i ∣ Y , θ t ) P ( Z i ∣ Y , θ t + 1 ) P ( Z i ∣ Y , θ t ) = l o g ∑ i P ( Z i ∣ Y , θ t + 1 ) = 0 \left. \begin{aligned} H(\theta^{t+1},\theta^t)-H(\theta^{t}, \theta^t)&=\sum_{i}P(Z_i|Y,\theta^t)log \frac{P(Z_i|Y,\theta^{t+1})}{P(Z_i|Y,\theta^t)}\\ &\leqslant log \sum_{i}P(Z_i|Y,\theta^t)\frac{P(Z_i|Y,\theta^{t+1})}{P(Z_i|Y,\theta^t)}\\ &=log \sum_{i}P(Z_i|Y,\theta^{t+1})=0 \end{aligned} \right. H(θt+1,θt)H(θt,θt)=iP(ZiY,θt)logP(ZiY,θt)P(ZiY,θt+1)logiP(ZiY,θt)P(ZiY,θt)P(ZiY,θt+1)=logiP(ZiY,θt+1)=0

于是结论 P ( Y ∣ θ t + 1 ) ⩾ P ( Y ∣ θ t ) P(Y|\theta^{t+1})\geqslant P(Y|\theta^t) P(Yθt+1)P(Yθt)
得证.故而第一点得证.因为 L ( θ ) L(\theta) L(θ)的单调有界性, 于是它就是收敛的.

第二个定理

至于如何证明收敛到 θ ∗ \theta^{*} θ
L ( θ ) L(\theta) L(θ)的一个稳定点的这名请参考文章Tobias, R. D. (1986). 1983-On
the Convergence Proferties of the EM Algorithm.pdf. Annals of
Statistics, 14(2), 590–606.

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值