Resample方法

这篇博客介绍了重采样技术,包括Bootstrap、Bagging、Boosting和AdaBoost。Bootstrap是在原有训练数据集上进行随机重采样,以反映数据真实分布。Bagging通过Bootstrap生成多个分类器并平均其结果,提升不稳定分类器的准确性。Boosting则是一系列有序的分类器,每个后续分类器专注于纠正前一个的错误。AdaBoost是一种特定的Boosting算法,对于详细的解释可以参考相关资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bootstrap

在原有的训练数据集(数据集大小为n)上重复性地随机选取n个数据.

核心思想在于,给定训练集,当你认为给定的训练集不能够很好地反应数据的真实分布时,可以采用重采样的方法,来增大样本.

Bagging

bootstrap aggregating

在原有的训练数据集 D D D上,采用bootstrap的方法独立选取 m m m个训练集分别训练 m m m个分类器/回归,然后组合成最终的分类器/回归.

Bagging的方法能够提升不稳定分类器的识别准确率,因为它有效地平均了多个分类器之间的不稳定性.

Boosting

Boosting同样是生成多个子分类器,但是多个子分类器的产生是有序的,即一个分类器依赖于前一个分类器,并且子分类器着重关注于前一个分类器误分类的样本.

AdaBoost

关于AdaBoost的知识可以参考AdaBoost详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值