【pytorch】ncnn

onnx转ncnn

完整实现:

def onnx2ncnn(self):
    assert os.path.isfile(simplified_onnx_path)

    os.system('onnx2ncnn {} {} {}'.format(simplified_onnx_path, param_path, bin_path))
    print('\n param has been save to {}'.format(param_path))
    print(' bin   has been save to {}\n'.format(bin_path))

    os.system('ncnnoptimize {} {} {} {} fp32'.format(param_path, bin_path, param_path, bin_path))
    print('\n param has been ncnnoptimized')
    print(' bin   has been ncnnoptimized\n')

1. 简化onnx

如果省略此步,会导致模型耗时增加约一半,模型大小增加约一半。且利用网站在线转换时容易报错:Unsupported unsqueeze axes !

如果没安装过 onnx-simplifie,安装一下:

pip install onnx-simplifier==0.2.4 -i https://pypi.tuna.tsinghua.edu.cn/simple 

Note:经过simplify的onnx并不会有精度损失!

python -m onnxsim .\2task.aiyou.0.0.onnx 2task.0.0.onnx

2. onnx2ncnn

2.1.指令转ncnn

安装:

  1. 参照 Build for MacOSX 进行安装。
  2. 把ncnn/build/tools/下的 onnx2ncnn 和 ncnnoptimize(其他地方会用到) 移到全局环境下:
    cp onnx2ncnn /usr/local/bin/
    cp ncnnoptimize /usr/local/bin/
    
  3. 即可到任意目录下执行 onnx 到 ncnn 的转换:
    • 记得要先写 .param ,再写 .bin
      onnx2ncnn A.onnx A.param A.bin
      
2.2.网站在线转ncnn

进入 convertmodel.com 进行在线转换:
在这里插入图片描述

3. 优化ncnn

Note:如果不优化的话,pnn下loadModel时可能会fail。

ncnnoptimize A.param A.bin A.param A.bin fp32

优化后的param只剩卷积结构:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值