【目标检测】R-CNN 系列

RCNN系列之前

传统的detection主流方法:
DPM(Deformable parts models), 在VOC2007上能到43%的mAP,虽然DPM和CNN看起来差别很大,但依旧属于CNN。
CNN流行之后,Szegedy做过将detection问题作为回归问题的尝试(Deep Neural Networks for Object Detection),但是效果差强人意,在VOC2007上mAP只有30.5%。

RCNN

意义

把detection问题转化为CNN在分类问题。

实现

RCNN使用region proposal(具体用的是Selective Search Koen van de Sande: Segmentation as Selective Search for Object Recognition)来得到有可能得到是object的若干(大概10^3量级)图像局部区域,然后把这些区域分别输入到CNN中,得到区域的feature,再在feature上加上分类器,判断feature对应的区域是属于具体某类object还是背景。当然,RBG还用了区域对应的feature做了针对boundingbox的回归,用来修正预测的boundingbox的位置。

效果

RCNN在VOC2007上的mAP是58%左右。

弊端

RCNN存在着重复计算的问题(proposal的region有几千个,多数都是互相重叠,重叠部分会被多次重复提取feature)

Fast RCNN

这里写图片描述

意义

解决RCNN存在着重复计算的问题。

实现

跟RCNN最大区别就是Fast-RCNN将proposal的region映射到CNN的最后一层conv layer的feature map上,这样一张图片只需要提取一次feature,大大提高了速度,也由于流程的整合以及其他原因。

效果

在VOC2007上的mAP也提高到了68%。

弊端

Fast-RCNN的速度瓶颈在Region proposal上。

Faster RCNN

意义

解决Fast-RCNN在Region proposal上的速度瓶颈。

实现

RBG和Kaiming He一帮人将Region proposal也交给CNN来做,提出了Faster-RCNN。Fater-RCNN中的region proposal netwrok实质是一个Fast-RCNN,这个Fast-RCNN输入的region proposal的是固定的(把一张图片划分成n*n个区域,每个区域给出9个不同ratio和scale的proposal),输出的是对输入的固定proposal是属于背景还是前景的判断和对齐位置的修正(regression)。Region proposal network的输出再输入第二个Fast-RCNN做更精细的分类和Boundingbox的位置修正。

效果

Fater-RCNN速度更快了,而且用VGG net作为feature extractor时在VOC2007上mAP能到73%。

总结

如果都用一句话来描述。

RCNN 解决的是,“为什么不用CNN做classification呢?”(但是这个方法相当于过一遍network出bounding box,再过另一个出label,原文写的很不“elegant”。

Fast-RCNN 解决的是,“为什么不一起输出bounding box和label呢?”(但是这个时候用selective search generate regional proposal的时间实在太长了。

Faster-RCNN 解决的是,“为什么还要用selective search呢?”


[1] 知乎回答-如何评价rcnn、fast-rcnn和faster-rcnn这一系列方法?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值