Assignment | 01-week4 -Building your Deep Neural Network: Step by Step_part_1

该系列仅在原课程基础上课后作业部分添加个人学习笔记,或相关推导补充等。如有错误,还请批评指教。在学习了 Andrew Ng 课程的基础上,为了更方便的查阅复习,将其整理成文字。因本人一直在学习英语,所以该系列以英文为主,同时也建议读者以英文为主,中文辅助,以便后期进阶时,为学习相关领域的学术论文做铺垫。- ZJ

Coursera 课程 |deeplearning.ai |网易云课堂


转载请注明作者和出处:ZJ 微信公众号-「SelfImprovementLab」

知乎https://zhuanlan.zhihu.com/c_147249273

CSDNhttp://blog.csdn.net/junjun_zhao/article/details/79046571


Welcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!

  • In this notebook, you will implement all the functions required to build a deep neural network. 实现构建一个深度神经网络所需要的所有的函数
  • In the next assignment, you will use these functions to build a deep neural network for image classification.用这些函数 进行图像识别

After this assignment you will be able to:
- Use non-linear units like ReLU to improve your model
- Build a deeper neural network (with more than 1 hidden layer)
- Implement an easy-to-use neural network class

Notation:
- Superscript [l] [ l ] denotes a quantity associated with the lth l t h layer. 第几层
- Example: a[L] a [ L ] is the Lth L t h layer activation. W[L] W [ L ] and b[L] b [ L ] are the Lth L t h layer parameters.
- Superscript (i) ( i ) denotes a quantity associated with the ith i t h example. 第几个样本
- Example: x(i) x ( i ) is the ith i t h training example.
- Lowerscript i i denotes the ith entry of a vector.第几层的 第几个向量
- Example: a[l]i a i [ l ] denotes the ith i t h entry of the lth l t h layer’s activations).

Let’s get started!

1 - Packages

Let’s first import all the packages that you will need during this assignment.
- numpy is the main package for scientific computing with Python.
- matplotlib is a library to plot graphs in Python.
- dnn_utils provides some necessary functions for this notebook.
- testCases provides some test cases to assess the correctness of your functions
- np.random.seed(1) is used to keep all the random function calls consistent.用来保持所有的随机函数调用一致 It will help us grade your work. Please don’t change the seed.

import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v2 import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward

%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

%reload_ext autoreload
%autoreload 2

np.random.seed(1) #用来保持所有的随机函数调用一致

# The autoreload extension is already loaded. To reload it, use:
#   %reload_ext autoreload


练习

import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v2 import *
from dnn_utils_v2 import sigmoid, sigmoid_backward,relu ,relu_backward

%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

%load_ext autoreload
%autoreload 2
  1. 注意符号
  2. 注意单词拼写
  3. 注意关键词 key 的使用
import numpy as np

def sigmoid(Z):
    """
    Implements the sigmoid activation in numpy

    Arguments:
    Z -- numpy array of any shape

    Returns:
    A -- output of sigmoid(z), same shape as Z ,  A 的 形状 和 Z 是一样的
    cache -- returns Z as well, useful during backpropagation  吴恩达老师在视频中提到的 Z 的缓存,后期再反向传播的时候会用到
    """

    A = 1/(1+np.exp(-Z))
    cache = Z

    return A, cache
def relu(Z):
    """
    Implement the RELU function.

    Arguments:
    Z -- Output of the linear layer, of any shape

    Returns:
    A -- Post-activation parameter, of the same shape as Z
    cache -- a python dictionary containing "A" ; stored for computing the backward pass efficiently 存储起来 为了反向传播更加有效
    """

    A = np.maximum(0,Z)

    assert(A.shape == Z.shape)

    cache = Z 
    return A, cache
def relu_backward(dA, cache):
    """
    Implement the backward propagation for a single RELU unit.

    Arguments:
    dA -- post-activation gradient, of any shape
    cache -- 'Z' where we store for computing backward propagation efficiently

    Returns:
    dZ -- Gradient of the cost with respect to Z 关于Z 的梯度
    """

    Z = cache
    dZ = np.array(dA, copy=True) # just converting dz to a correct object.

    # When z <= 0, you should set dz to 0 as well. 
    dZ[Z <= 0] = 0

    assert (dZ.shape == Z.shape)

    return dZ

def sigmoid_backward(dA, cache):
    """
    Implement the backward propagation for a single SIGMOID unit.

    Arguments:
    dA -- post-activation gradient, of any shape
    cache -- 'Z' where we store for computing backward propagation efficiently

    Returns:
    dZ -- Gradient of the cost with respect to Z
    """

    Z = cache

    s = 1/(1+np.exp(-Z))
    dZ = dA * s * (1-s)

    assert (dZ.shape == Z.shape)

    return dZ

2 - Outline of the Assignment 作业大纲 概要

To build your neural network, you will be implementing several “helper functions”. These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:

  • Initialize the parameters for a two-layer network and for an L L -layer neural network.初始化双隐藏层和 L 层神经网络模型的参数
  • Implement the forward propagation module (shown in purple in the figure below).
    • Complete the LINEAR part of a layer’s forward propagation step (resulting in Z[l]).
    • We give you the ACTIVATION function (relu/sigmoid).
    • Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
    • Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer L L ). This gives you a new L_model_forward function.
  • Compute the loss.
  • Implement the backward propagation module (denoted in red in the figure below).
    • Complete the LINEAR part of a layer’s backward propagation step.
    • We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward)
    • Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function.
    • Stack [LINEAR->RELU] backward L-1 times and add 和 [LINEAR->SIGMOID] backward in a new L_model_backward function
  • Finally update the parameters.

  • 初始化双隐藏层和 L 层神经网络模型的参数

  • 做前向传播操作

    • 计算正向传播的 LINEAR 部分,因为每个神经元节点都是由两部分组成,这在逻辑回归里面有阐述。线性部分即 Z=WX+b 这部分,输出部分就是 A,就是将线性部分的结果输入到激活函数所产生的结果。
    • 采用 RELU 或者 sigmoid 激活函数计算结果值
    • 联合上述两个步骤,进行前向传播操作[LINEAR->ACTIVATION]
    • 对输出层之前的 L-1 层,做 L-1 次的前向传播 [LINEAR->RELU] ,并将结果输出到第 L 层[LINEAR->SIGMOID]。所以在前面 L-1 层我们的激活函数是RELU,在输出层我们的激活函数是 sigmoid。
  • 计算损失函数

  • 做后向传播操作(下图红色区域部分)

    • 完成神经网络反向传播的 LINEAR 部分
    • 我们提供给你 激活函数的导数 (relu_backward/sigmoid_backward) 计算激活函数(RELU 或者 sigmoid)的梯度
    • 结合前面两个步骤,产生一个新的后向函数[LINEAR->ACTIVATION]
    • 将 [LINEAR->RELU] 的向后传播执行 L-1 次 和 [LINEAR->SIGMOID] 向后传播 在 一个新的 L 层的向后函数
  • 更新参数

这里写图片描述

Figure 1

Note that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps. 缓存 Z 在向后传播时 用 cache在 计算梯度

3 - Initialization

You will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to L layers. 辅助函数 双隐层 和 L 隐层

3.1 - 2-layer Neural Network

Exercise: Create and initialize the parameters of the 2-layer neural network. 2 层神经网络

Instructions:
- The model’s structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
- Use random initialization for the weight matrices. Use np.random.randn(shape)*0.01 with the correct shape.
- Use zero initialization for the biases 偏移量 . Use np.zeros(shape).

# GRADED FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer  输入层大小 
    n_h -- size of the hidden layer  隐含层大小 
    n_y -- size of the output layer   输出层大小

    Returns:
    parameters -- python dictionary containing your parameters: 字典 包含以下 参数
                    W1 -- weight matrix of shape (n_h, n_x)     ($n^{[l]}$,$n^{[l-1]}$)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """

    np.random.seed(1)

    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h,n_x)*0.01
    b1 = np.zeros((n_h, 1))
    W2 = np.random.randn(n_y, n_h)*0.01
    b2 = np.zeros((n_y, 1))
    ### END CODE HERE ###

    assert(W1.shape == (n_h, n_x))
    assert(b1.shape == (n_h, 1))
    assert(W2.shape == (n_y,n_h))
    assert(b2.shape == (n_y, 1))

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters    
parameters = initialize_parameters(2,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

"""
1. 错误,字典 "W1": W1, 多个键值对,后面要加逗号
2.np.zeros( ) 的使用,括号参数里面要完整,还有一层括号   b1 = np.zeros((n_h, 1))
"""
W1 = [[ 0.01624345 -0.00611756]
 [-0.00528172 -0.01072969]]
b1 = [[0.]
 [0.]]
W2 = [[ 0.00865408 -0.02301539]]
b2 = [[0.]]

Expected output:

**W1** [[ 0.01624345 -0.00611756] [-0.00528172 -0.01072969]]
**b1**[[ 0.] [ 0.]]
**W2** [[ 0.00865408 -0.02301539]]
**b2** [[ 0.]]

3.2 - L-layer Neural Network

The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize_parameters_deep, you should make sure that your dimensions match between each layer. Recall that n[l] n [ l ] is the number of units in layer l l . Thus for example if the size of our input X is (12288,209) ( 12288 , 209 ) (with m=209 m = 209 examples) then:

m 个 样本的情况下,激活函数 A 的 shape (n[l],m) ( n [ l ] , m )

**Shape of W** **Shape of b** **Activation** **Shape of Activation**
**Layer 1** (n[1],12288) ( n [ 1 ] , 12288 ) (n[1],1) ( n [ 1 ] , 1 ) Z[1]=W[1]X+b[1] Z [ 1 ] = W [ 1 ] X + b [ 1 ] (n[1],209) ( n [ 1 ] , 209 )
**Layer 2** (n[2],n[1]) ( n [ 2 ] , n [ 1 ] ) (n[2],1) ( n [ 2 ] , 1 ) Z[2]=W[2]A[1]+b[2] Z [ 2 ] = W [ 2 ] A [ 1 ] + b [ 2 ] (n[2],209) ( n [ 2 ] , 209 )
**Layer L-1** (n[L1],n[L2]) ( n [ L − 1 ] , n [ L − 2 ] ) (n[L1],1) ( n [ L − 1 ] , 1 ) Z[L1]=W[L1]A[L2]+b[L1] Z [ L − 1 ] = W [ L − 1 ] A [ L − 2 ] + b [ L − 1 ] (n[L1],209) ( n [ L − 1 ] , 209 )
**Layer L** (n[L],n[L1]) ( n [ L ] , n [ L − 1 ] ) (n[L],1) ( n [ L ] , 1 ) Z[L]=W[L]A[L1]+b[L] Z [ L ] = W [ L ] A [ L − 1 ] + b [ L ] (n[L],209) ( n [ L ] , 209 )

Remember that when we compute WX+b W X + b in python, it carries out broadcasting. For example, if:

W=jmpknqlorX=adgbehcfib=stu(2) (2) W = [ j k l m n o p q r ] X = [ a b c d e f g h i ] b = [ s t u ]

Then WX+b W X + b will be:

WX+b=(ja+kd+lg)+s(ma+nd+og)+t(pa+qd+rg)+u(jb+ke+lh)+s(mb+ne+oh)+t(pb+qe+rh)+u(jc+kf+li)+s(mc+nf+oi)+t(pc+qf+ri)+u(3) (3) W X + b = [ ( j a + k d + l g ) + s ( j b + k e + l h ) + s ( j c + k f + l i ) + s ( m a + n d + o g ) + t ( m b + n e + o h ) + t ( m c + n f + o i ) + t ( p a + q d + r g ) + u ( p b + q e + r h ) + u ( p c + q f + r i ) + u ]

Exercise: Implement initialization for an L-layer Neural Network.

Instructions:
- The model’s structure is [LINEAR -> RELU] × × (L-1) -> LINEAR -> SIGMOID. I.e., it has L1 L − 1 layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
- Use random initialization for the weight matrices. Use np.random.rand(shape) * 0.01.
- Use zeros initialization for the biases. Use np.zeros(shape).
- We will store n[l] n [ l ] , the number of units in different layers, in a variable layer_dims. For example, the layer_dims for the “Planar Data classification model” from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means W1’s shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to L L layers!
- Here is the implementation for L=1 (one layer neural network). It should inspire you to implement the general case (L-layer neural network).

    if L == 1:
        parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
        parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
# GRADED FUNCTION: initialize_parameters_deep

def initialize_parameters_deep(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network 
    (2,4,1) 神经网络中的每一层的层数 类似于 0 (输入)层是 2,1 (隐藏)层是 4 ,2 (输出)层是 1
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    bl -- bias vector of shape (layer_dims[l], 1)
    """

    np.random.seed(3)
    parameters = {}
    L = len(layer_dims)            # number of layers in the network

    for l in range(1, L):
        ### START CODE HERE ### (≈ 2 lines of code)
        parameters['W' + str(l)] = np.random.randn(layer_dims[l],layer_dims[l-1])*0.01
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
        ### END CODE HERE ###

        assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
        assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))


    return parameters
parameters = initialize_parameters_deep([5,4,3])
print("W1 = \n" + str(parameters["W1"]))
print("b1 = \n" + str(parameters["b1"]))
print("W2 = \n" + str(parameters["W2"]))
print("b2 = \n" + str(parameters["b2"]))
W1 = 
[[ 0.01788628  0.0043651   0.00096497 -0.01863493 -0.00277388]
 [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
 [-0.01313865  0.00884622  0.00881318  0.01709573  0.00050034]
 [-0.00404677 -0.0054536  -0.01546477  0.00982367 -0.01101068]]
b1 = 
[[0.]
 [0.]
 [0.]
 [0.]]
W2 = 
[[-0.01185047 -0.0020565   0.01486148  0.00236716]
 [-0.01023785 -0.00712993  0.00625245 -0.00160513]
 [-0.00768836 -0.00230031  0.00745056  0.01976111]]
b2 = 
[[0.]
 [0.]
 [0.]]

Expected output:

**W1** [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]]
**b1** [[ 0.] [ 0.] [ 0.] [ 0.]]
**W2** [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]]
**b2** [[ 0.] [ 0.] [ 0.]]

4 - Forward propagation module

4.1 - Linear Forward

Now that you have initialized your parameters, you will do the forward propagation module. You will start by implementing some basic functions that you will use later when implementing the model. You will complete three functions in this order:

  • LINEAR
  • LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.
  • [LINEAR -> RELU] × × (L-1) -> LINEAR -> SIGMOID (whole model)

The linear forward module (vectorized over all the examples) computes the following equations:

Z[l]=W[l]A[l1]+b[l](4) (4) Z [ l ] = W [ l ] A [ l − 1 ] + b [ l ]

where A[0]=X A [ 0 ] = X .

Exercise: Build the linear part of forward propagation.

Reminder:
The mathematical representation of this unit is Z[l]=W[l]A[l1]+b[l] Z [ l ] = W [ l ] A [ l − 1 ] + b [ l ] . You may also find np.dot() useful. If your dimensions don’t match, printing W.shape may help.

# GRADED FUNCTION: linear_forward

def linear_forward(A, W, b):
    """
    Implement the linear part of a layer's forward propagation.

    Arguments:
    A -- activations from previous layer (or input data): (size of previous layer, number of examples) 
    W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
    b -- bias vector, numpy array of shape (size of the current layer, 1)

    Returns:
    Z -- the input of the activation function, also called pre-activation parameter 
    cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently
    """

    ### START CODE HERE ### (≈ 1 line of code)
    Z = np.dot(W,A)+ b
    ### END CODE HERE ###

    assert(Z.shape == (W.shape[0], A.shape[1]))
    cache = (A, W, b)

    return Z, cache
A, W, b = linear_forward_test_case()

Z, linear_cache = linear_forward(A, W, b)
print("Z = " + str(Z))
Z = [[ 3.26295337 -1.23429987]]

Expected output:

**Z** [[ 3.26295337 -1.23429987]]

4.2 - Linear-Activation Forward

In this notebook, you will use two activation functions:

  • Sigmoid: σ(Z)=σ(WA+b)=11+e(WA+b) σ ( Z ) = σ ( W A + b ) = 1 1 + e − ( W A + b ) . We have provided you with the sigmoid function. This function returns two items: the activation value “a” and a “cache” that contains “Z” (it’s what we will feed in to the corresponding backward function). To use it you could just call:
A, activation_cache = sigmoid(Z)
  • ReLU: The mathematical formula for ReLu is A=RELU(Z)=max(0,Z) A = R E L U ( Z ) = m a x ( 0 , Z ) . We have provided you with the relu function. This function returns two items: the activation value “A” and a “cache” that contains “Z” (it’s what we will feed in to the corresponding backward function). To use it you could just call:
A, activation_cache = relu(Z)

For more convenience, you are going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you will implement a function that does the LINEAR forward step followed by an ACTIVATION forward step.

Exercise: Implement the forward propagation of the LINEAR->ACTIVATION layer. Mathematical relation is: A[l]=g(Z[l])=g(W[l]A[l1]+b[l]) A [ l ] = g ( Z [ l ] ) = g ( W [ l ] A [ l − 1 ] + b [ l ] ) where the activation “g” can be sigmoid() or relu(). Use linear_forward() and the correct activation function.

# GRADED FUNCTION: linear_activation_forward

def linear_activation_forward(A_prev, W, b, activation):
    """
    Implement the forward propagation for the LINEAR->ACTIVATION layer

    Arguments:
    A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
    W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
    b -- bias vector, numpy array of shape (size of the current layer, 1)
    activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"

    Returns:
    A -- the output of the activation function, also called the post-activation value 
    cache -- a python dictionary containing "linear_cache" and "activation_cache";
             stored for computing the backward pass efficiently

    就是 输入 A^{[l-1]} W and  b 输出 A^{[l]} 前向传播
    """

    if activation == "sigmoid":
        # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
        ### START CODE HERE ### (≈ 2 lines of code)
#         回忆公式 1. 先计算 Z= WX+b 2. 在计算 a = sigmoid(z)  只是中间加入了缓存 一些数据
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z)
        ### END CODE HERE ###

    elif activation == "relu":
        # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
        ### START CODE HERE ### (≈ 2 lines of code)
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = relu(Z)
        ### END CODE HERE ###
     # linear_cache = (A, W, b)
    assert (A.shape == (W.shape[0], A_prev.shape[1]))
    cache = (linear_cache, activation_cache)

    return A, cache
A_prev, W, b = linear_activation_forward_test_case()
# 当 方法的参数 是 可以指定 string 类型字符的时候 可以这么写 activation = "sigmoid" 
A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
print("With sigmoid: A = " + str(A))

A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
print("With ReLU: A = " + str(A))
With sigmoid: A = [[0.96890023 0.11013289]]
With ReLU: A = [[3.43896131 0.        ]]

Expected output:

**With sigmoid: A ** [[ 0.96890023 0.11013289]]
**With ReLU: A ** [[ 3.43896131 0. ]]

Note: In deep learning, the “[LINEAR->ACTIVATION]” computation is counted as a single layer in the neural network, not two layers.

d) L-Layer Model

For even more convenience when implementing the L L -layer Neural Net, you will need a function that replicates the previous one (linear_activation_forward with RELU) L1 times, then follows that with one linear_activation_forward with SIGMOID.

这里写图片描述

Figure 2 : [LINEAR -> RELU] × × (L-1) -> LINEAR -> SIGMOID model

Exercise: Implement the forward propagation of the above model.

Instruction: In the code below, the variable AL will denote A[L]=σ(Z[L])=σ(W[L]A[L1]+b[L]) A [ L ] = σ ( Z [ L ] ) = σ ( W [ L ] A [ L − 1 ] + b [ L ] ) . (This is sometimes also called Yhat, i.e., this is Ŷ  Y ^ .)

Tips:
- Use the functions you had previously written
- Use a for loop to replicate [LINEAR->RELU] (L-1) times
- Don’t forget to keep track of the caches in the “caches” list. To add a new value c to a list, you can use list.append(c).

# GRADED FUNCTION: L_model_forward

def L_model_forward(X, parameters):
    """
    Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation

    Arguments:
    X -- data, numpy array of shape (input size, number of examples)
    parameters -- output of initialize_parameters_deep()
    前面的 initialize_parameters_deep() 方法 里面存了两个 键值对 w and  b 所以 //2 就能 得出 神经网络中的层数
    assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
    assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))

    Returns:
    AL -- last post-activation value
    caches -- list of caches containing:
                every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)
                the cache of linear_sigmoid_forward() (there is one, indexed L-1)
    """

    caches = []
    A = X
    L = len(parameters) // 2                  # number of layers in the neural network 神经网络中的层数
#     print(L)
    # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list. 1 到 L-1 不算 0 层
    for l in range(1, L):
        A_prev = A 
        ### START CODE HERE ### (≈ 2 lines of code)
        A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], activation="relu")
        caches.append(cache)
        ### END CODE HERE ###

    # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
    ### START CODE HERE ### (≈ 2 lines of code)
#     print('W' + str(L)) W2
#     print(parameters['W' + str(L)])
#     print( parameters['b'+ str(L)])
    AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b'+ str(L)], activation="sigmoid")
    caches.append(cache)
    ### END CODE HERE ###

    assert(AL.shape == (1,X.shape[1]))

    return AL, caches

"""
错误:

1. parameters['W' + str(L)], parameters['b'+ str(L)]

这里写错了,之前直接写的‘WL’和 ‘bL’因为 L 是个具体的层数 W2  不是字母 L 是之前计算出来的

"""
"\n错误:\n\n1. parameters['W' + str(L)], parameters['b'+ str(L)]\n\n这里写错了,之前直接写的‘WL’和 ‘bL’因为 L 是个具体的层数 W2  不是字母 L \n\n"
X, parameters = L_model_forward_test_case()
AL, caches = L_model_forward(X, parameters)
print("AL = " + str(AL))
print("Length of caches list = " + str(len(caches)))
AL = [[0.17007265 0.2524272 ]]
Length of caches list = 2
**AL** [[ 0.17007265 0.2524272 ]]
**Length of caches list ** 2

Great! Now you have a full forward propagation that takes the input X and outputs a row vector A[L] A [ L ] containing your predictions. It also records all intermediate values in “caches”. Using A[L] A [ L ] , you can compute the cost of your predictions.

5 - Cost function

Now you will implement forward and backward propagation. You need to compute the cost, because you want to check if your model is actually learning.

Exercise: Compute the cross-entropy cost J J , using the following formula:

(7)1mi=1m(y(i)log(a[L](i))+(1y(i))log(1a[L](i)))

# GRADED FUNCTION: compute_cost

def compute_cost(AL, Y):
    """
    Implement the cost function defined by equation (7).

    Arguments:
    AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
    Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)

    Returns:
    cost -- cross-entropy cost
    """

    m = Y.shape[1]

    # Compute loss from aL and y.
    ### START CODE HERE ### (≈ 1 lines of code)
    # cost = -(1.0/m)*np.sum(np.multiply(Y,np.log(AL))+np.multiply(1-Y,np.log(1-AL)))
    # axis=1 ,keepdims=True 按行相加,并且保持其二维特性
    cost =  -(1.0/m)*np.sum(np.multiply(Y, np.log(AL)) + np.multiply(1-Y, np.log(1-AL)), axis=1 ,keepdims=True)
    ### END CODE HERE ###

    cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
    assert(cost.shape == ())

    return cost
Y, AL = compute_cost_test_case()

print("cost = " + str(compute_cost(AL, Y)))
cost = 0.41493159961539694

Expected Output:

**cost** 0.41493159961539694

6 - Backward propagation module

Just like with forward propagation, you will implement helper functions for backpropagation. Remember that back propagation is used to calculate the gradient of the loss function with respect to the parameters.

Reminder:
这里写图片描述

Figure 3 : Forward and Backward propagation for LINEAR->RELU->LINEAR->SIGMOID
The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.

d(a[2],y)dz[1]=d(a[2],y)da[2]da[2]dz[2]dz[2]da[1]da[1]dz[1](8) (8) d L ( a [ 2 ] , y ) d z [ 1 ] = d L ( a [ 2 ] , y ) d a [ 2 ] d a [ 2 ] d z [ 2 ] d z [ 2 ] d a [ 1 ] d a [ 1 ] d z [ 1 ]
In order to calculate the gradient dW[1]=LW[1] d W [ 1 ] = ∂ L ∂ W [ 1 ] , you use the previous chain rule and you do dW[1]=dz[1]×z[1]W[1] d W [ 1 ] = d z [ 1 ] × ∂ z [ 1 ] ∂ W [ 1 ] . During the backpropagation, at each step you multiply your current gradient by the gradient corresponding to the specific layer to get the gradient you wanted. Equivalently, in order to calculate the gradient db[1]=Lb[1] d b [ 1 ] = ∂ L ∂ b [ 1 ] , you use the previous chain rule and you do db[1]=dz[1]×z[1]b[1] d b [ 1 ] = d z [ 1 ] × ∂ z [ 1 ] ∂ b [ 1 ] . This is why we talk about **backpropagation**. !-->

Now, similar to forward propagation, you are going to build the backward propagation in three steps:
- LINEAR backward
- LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation
- [LINEAR -> RELU] × × (L-1) -> LINEAR -> SIGMOID backward (whole model)

6.1 - Linear backward

For layer l l , the linear part is: Z[l]=W[l]A[l1]+b[l] (followed by an activation).

Suppose you have already calculated the derivative dZ[l]=Z[l] d Z [ l ] = ∂ L ∂ Z [ l ] . You want to get (dW[l],db[l]dA[l1]) ( d W [ l ] , d b [ l ] d A [ l − 1 ] ) .

这里写图片描述

Figure 4

The three outputs (dW[l],db[l],dA[l]) ( d W [ l ] , d b [ l ] , d A [ l ] ) are computed using the input dZ[l] d Z [ l ] .Here are the formulas you need:

dW[l]=W[l]=1mdZ[l]A[l1]T(8) (8) d W [ l ] = ∂ L ∂ W [ l ] = 1 m d Z [ l ] A [ l − 1 ] T

db[l]=b[l]=1mi=1mdZ[l](i)(9) (9) d b [ l ] = ∂ L ∂ b [ l ] = 1 m ∑ i = 1 m d Z [ l ] ( i )

dA[l1]=A[l1]=W[l]TdZ[l](10) (10) d A [ l − 1 ] = ∂ L ∂ A [ l − 1 ] = W [ l ] T d Z [ l ]

Exercise: Use the 3 formulas above to implement linear_backward().

# GRADED FUNCTION: linear_backward

def linear_backward(dZ, cache):
    """
    Implement the linear portion of backward propagation for a single layer (layer l)

    Arguments:
    dZ -- Gradient of the cost with respect to the linear output (of current layer l)
    cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer

    Returns:
    dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    """
    A_prev, W, b = cache
    m = A_prev.shape[1]

    ### START CODE HERE ### (≈ 3 lines of code)
    dW = (1.0/m)*np.dot(dZ,A_prev.T)
    db = (1.0/m)*np.sum(dZ,axis = 1, keepdims=True)
    dA_prev = np.dot(W.T,dZ)
    ### END CODE HERE ###

    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)

    return dA_prev, dW, db
# Set up some test inputs
dZ, linear_cache = linear_backward_test_case()

dA_prev, dW, db = linear_backward(dZ, linear_cache)
print ("dA_prev =\n "+ str(dA_prev))
print ("dW = \n" + str(dW))
print ("db = \n" + str(db))

"""
错误:
1. db = (1.0/m)*np.sum(dZ,axis = 1, keepdims=True)
一开始 没有 加上 axis = 1, keepdims=True 的参数说明,导致出错,记住 一定要加上

"""
dA_prev =
 [[ 0.51822968 -0.19517421]
 [-0.40506361  0.15255393]
 [ 2.37496825 -0.89445391]]
dW = 
[[-0.10076895  1.40685096  1.64992505]]
db = 
[[0.50629448]]

Expected Output:

**dA_prev** [[ 0.51822968 -0.19517421] [-0.40506361 0.15255393] [ 2.37496825 -0.89445391]]
**dW** [[-0.10076895 1.40685096 1.64992505]]
**db** [[ 0.50629448]]

6.2 - Linear-Activation backward

Next, you will create a function that merges the two helper functions: linear_backward and the backward step for the activation linear_activation_backward.

To help you implement linear_activation_backward, we provided two backward functions:
- sigmoid_backward: Implements the backward propagation for SIGMOID unit. You can call it as follows:

dZ = sigmoid_backward(dA, activation_cache)
  • relu_backward: Implements the backward propagation for RELU unit. You can call it as follows:
dZ = relu_backward(dA, activation_cache)

If g(.) g ( . ) is the activation function,
sigmoid_backward and relu_backward compute

dZ[l]=dA[l]g(Z[l])(11) (11) d Z [ l ] = d A [ l ] ∗ g ′ ( Z [ l ] )
.

Exercise: Implement the backpropagation for the LINEAR->ACTIVATION layer.

# GRADED FUNCTION: linear_activation_backward

def linear_activation_backward(dA, cache, activation):
    """
    Implement the backward propagation for the LINEAR->ACTIVATION layer.
    输入 dA 还有所需要的 cache Z W b 等 ,输入 dA_prev  dW  db
    Arguments:
    dA -- post-activation gradient for current layer l 
    cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
    activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"

    Returns:
    dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    """
    linear_cache, activation_cache = cache

    if activation == "relu":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        ### END CODE HERE ###

    elif activation == "sigmoid":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        ### END CODE HERE ###

    return dA_prev, dW, db
AL, linear_activation_cache = linear_activation_backward_test_case()

dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid")
print ("sigmoid:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db) + "\n")

dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu")
print ("relu:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
sigmoid:
dA_prev = [[ 0.11017994  0.01105339]
 [ 0.09466817  0.00949723]
 [-0.05743092 -0.00576154]]
dW = [[ 0.10266786  0.09778551 -0.01968084]]
db = [[-0.05729622]]

relu:
dA_prev = [[ 0.44090989  0.        ]
 [ 0.37883606  0.        ]
 [-0.2298228   0.        ]]
dW = [[ 0.44513824  0.37371418 -0.10478989]]
db = [[-0.20837892]]

Expected output with sigmoid:

dA_prev [[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]]
dW [[ 0.10266786 0.09778551 -0.01968084]]
db [[-0.05729622]]

Expected output with relu

dA_prev [[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]]
dW [[ 0.44513824 0.37371418 -0.10478989]]
db [[-0.20837892]]

6.3 - L-Model Backward

Now you will implement the backward function for the whole network. Recall that when you implemented the L_model_forward function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you will use those variables to compute the gradients. Therefore, in the L_model_backward function, you will iterate through all the hidden layers backward, starting from layer L L . On each step, you will use the cached values for layer l to backpropagate through layer l l . Figure 5 below shows the backward pass.

这里写图片描述

Figure 5 : Backward pass

* Initializing backpropagation*:
To backpropagate through this network, we know that the output is,
A[L]=σ(Z[L]). Your code thus needs to compute dAL =A[L] = ∂ L ∂ A [ L ] .
To do so, use this formula (derived using calculus which you don’t need in-depth knowledge of):

dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL

da=(ya1y1a) d a = − ( y a − 1 − y 1 − a )

You can then use this post-activation gradient dAL to keep going backward. As seen in Figure 5, you can now feed in dAL into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L_model_forward function). After that, you will have to use a for loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula :

grads["dW"+str(l)]=dW[l](15) (15) g r a d s [ " d W " + s t r ( l ) ] = d W [ l ]

For example, for l=3 l = 3 this would store dW[l] d W [ l ] in grads["dW3"].

Exercise: Implement backpropagation for the [LINEAR->RELU] × × (L-1) -> LINEAR -> SIGMOID model.

# GRADED FUNCTION: L_model_backward

def L_model_backward(AL, Y, caches):
    """
    Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group

    Arguments:
    AL -- probability vector, output of the forward propagation (L_model_forward())
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
    caches -- list of caches containing:
                every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
                the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])

    Returns:
    grads -- A dictionary with the gradients
             grads["dA" + str(l)] = ...
             grads["dW" + str(l)] = ...
             grads["db" + str(l)] = ...
    """
    grads = {}
    L = len(caches) # the number of layers
    m = AL.shape[1]
    Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL

    # Initializing the backpropagation
    ### START CODE HERE ### (1 line of code)
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    ### END CODE HERE ###

    # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
    ### START CODE HERE ### (approx. 2 lines)
    current_cache = caches[L-1]
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL,current_cache,activation="sigmoid")
    ### END CODE HERE ###

    for l in reversed(range(L - 1)):
        # lth layer: (RELU -> LINEAR) gradients.
        # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] 
        ### START CODE HERE ### (approx. 5 lines)
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)],current_cache,activation="relu")
        grads["dA" + str(l + 1)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp
        ### END CODE HERE ###

    return grads
"""
错误:

1. linear_activation_backward(grads["dA" + str(l + 2)],current_cache,activation="relu")

前面已经给了很好的 提示了,你还能写错,太不细心了,你瞎啊
"""
'\n错误:\n\n1. linear_activation_backward(grads["dA" + str(l + 2)],current_cache,activation="relu")\n\n前面已经给了很好的 提示了,你还能写错,太不细心了,你瞎啊\n'
AL, Y_assess, caches = L_model_backward_test_case()
grads = L_model_backward(AL, Y_assess, caches)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dA1 = "+ str(grads["dA1"]))
dW1 = [[0.41010002 0.07807203 0.13798444 0.10502167]
 [0.         0.         0.         0.        ]
 [0.05283652 0.01005865 0.01777766 0.0135308 ]]
db1 = [[-0.22007063]
 [ 0.        ]
 [-0.02835349]]
dA1 = [[ 0.          0.52257901]
 [ 0.         -0.3269206 ]
 [ 0.         -0.32070404]
 [ 0.         -0.74079187]]

Expected Output

dW1 [[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]]
db1 [[-0.22007063] [ 0. ] [-0.02835349]]
dA1 [[ 0. 0.52257901] [ 0. -0.3269206 ] [ 0. -0.32070404] [ 0. -0.74079187]]

6.4 - Update Parameters

In this section you will update the parameters of the model, using gradient descent:

W[l]=W[l]α dW[l](16) (16) W [ l ] = W [ l ] − α   d W [ l ]

b[l]=b[l]α db[l](17) (17) b [ l ] = b [ l ] − α   d b [ l ]

where α α is the learning rate. After computing the updated parameters, store them in the parameters dictionary.

Exercise: Implement update_parameters() to update your parameters using gradient descent.

Instructions:
Update parameters using gradient descent on every W[l] W [ l ] and b[l] b [ l ] for l=1,2,...,L l = 1 , 2 , . . . , L .

# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent

    Arguments:
    parameters -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradients, output of L_model_backward

    Returns:
    parameters -- python dictionary containing your updated parameters 
                  parameters["W" + str(l)] = ... 
                  parameters["b" + str(l)] = ...
    """

    L = len(parameters) // 2 # number of layers in the neural network

    # Update rule for each parameter. Use a for loop.
    ### START CODE HERE ### (≈ 3 lines of code)
    for l in range(L):
        parameters["W" + str(l+1)] = parameters["W" + str(l+1)]-learning_rate*grads["dW" + str(l+1)]
        parameters["b" + str(l+1)] = parameters["b" + str(l+1)]-learning_rate*grads["db" + str(l+1)]
    ### END CODE HERE ###

    return parameters
"""
Error:

parameters["W" + str(l+1)]-learning_rate*grads["dW" + str(l+1)]
1. 取值都是 str(l+1)

"""
'\nError:\n\nparameters["W" + str(l+1)]-learning_rate*grads["dW" + str(l+1)]\n1. 取值都是 str(l+1)\n\n'
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads, 0.1)

print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))
W1 = [[-0.59562069 -0.09991781 -2.14584584  1.82662008]
 [-1.76569676 -0.80627147  0.51115557 -1.18258802]
 [-1.0535704  -0.86128581  0.68284052  2.20374577]]
b1 = [[-0.04659241]
 [-1.28888275]
 [ 0.53405496]]
W2 = [[-0.55569196  0.0354055   1.32964895]]
b2 = [[-0.84610769]]

Expected Output:

W1 [[-0.59562069 -0.09991781 -2.14584584 1.82662008] [-1.76569676 -0.80627147 0.51115557 -1.18258802] [-1.0535704 -0.86128581 0.68284052 2.20374577]]
b1 [[-0.04659241] [-1.28888275] [ 0.53405496]]
W2 [[-0.55569196 0.0354055 1.32964895]]
b2 [[-0.84610769]]

7 - Conclusion

Congrats on implementing all the functions required for building a deep neural network!

We know it was a long assignment but going forward it will only get better. The next part of the assignment is easier.

In the next assignment you will put all these together to build two models:
- A two-layer neural network
- An L-layer neural network

You will in fact use these models to classify cat vs non-cat images!


PS: 欢迎扫码关注公众号:「SelfImprovementLab」!专注「深度学习」,「机器学习」,「人工智能」。以及 「早起」,「阅读」,「运动」,「英语 」「其他」不定期建群 打卡互助活动。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值