Revisiting Oversmoothing in Deep GCNs 重新探究深度GCN中的过度平滑

   过度平滑被认为是深度图卷积网络(GCN)中性能下降的主要原因。 在本文中,我们提出了一种新的观点,即深层GCN可以在训练过程中真正学会抗过度平滑。 这项工作将标准GCN体系结构解释为多层感知器(MLP)的分层集成和图正则化。 我们分析并得出结论,在训练之前,深层GCN的最终表示确实会过度平滑,但是,它会在训练过程中学习到反过度平滑的功能。 根据结论,本文进一步设计了一种便宜而有效的技巧来改善GCN训练。 我们验证我们的结论并评估三个引文网络上的技巧,并进一步提供有关GCN中邻域聚集的见解。

引言

   本文指出:深度GCN在训练之前确实会出现过度平滑,这也是GCN的特性,但在训练过程中它会学习抗过度平滑。通过两步来重构基于MLP的图正则化模型。每一步最小化一个损失函数,其中 ι r e g \iota _{reg} ιreg是图正则化损失,表示的是相连节点对之间的平滑性。 ι 0 \iota _{0} ι0是经验损失。步骤一隐式地将正则化损失编码为MLP的层级传播,得到GCN结构;步骤二在GCN结构上执行标准的反向传播算法来最小化 ι 0 \iota _{0} ι0
所以GCN能被表示为两步最小化:

在前向传播的过程中编码 ι r e g \iota _{reg} ιreg,并在 ι 0 \iota _{0} ι0的监督下训练参数。
在这里插入图片描述
   该图很明显的说明了在前向传播过程中(训练之前),GCN确实会遇到过平滑,因为特征之间的平滑性得分和节点之间的平滑性得分越来越高,说明特征和节点之间趋于一致,由于深层GCN体系结构的影响自然会使 ι r e g \iota _{reg} ιreg最小,因此逐渐使所有节点表示与拉普拉斯算子的最大特征向量成比例。但是在step2训练过程中GCN会学习阻止过平滑。因为:(1)过平滑的情况取决于 { W l } \left \{ W_{l} \right \} { Wl}
(2)step2的目标是找到最优的 { W l } \left \{ W_{l} \right \} { Wl},也就是最小化经验损失 ι 0 \iota _{0} ι0
(3)只要过平滑存在,节点间的表达就会变得难以区分,所以最小化 ι 0 \iota _{0} ι0,模型必须学习使特征变得可分,也就意味着抗过平滑。

1.1基于图的正则化

   图正则化是一种相当通用的图嵌入算法,它被描述为:找到一个映射 f ( ⋅ ) f\left ( \cdot \right ) f(),来最小化下面的损失函数:
在这里插入图片描述
第一项是标签集的经验风险,第二项是相连节点对的图正则化项。
其中:在这里插入图片描述
Δ = I − D − 1 / 2 A D − 1 / 2 \Delta =I-D^{-1/2}AD^{-1/2} Δ=ID1/2AD1/2是正则化后的拉普拉斯算子, ι r e g \iota _{reg} ιreg是对相邻节点间引起的变化进行惩罚。

1.2梯度下降来最小化 ι r e g \iota _{reg} ιreg

   给定拉普拉斯算子 Δ ∈ R n × n \Delta\in \mathbb{R}^{n\times n} ΔRn×n ,特征矩阵 Δ ∈ X n × d \Delta\in \mathbb{X}^{n\times d} ΔXn×d ,为了防止出现平凡解 X = 0 ∈ R n × d X=0\in \mathbb{R}^{n\times d} X=0Rn×d,加入一个限制条件, ∣ ∣ X ∣ ∣ F 2 = c 1 ∈ R ∔ \left | \left | X \right | \right |_{F}^{2}=c_{1}\in \mathbb{R}^{\dotplus } XF2=c1R,即 X X X的F范数必须为正数,F范数是矩阵各项绝对值平方之和。那么这个最优化问题就变为了:
在这里插入图片描述
我们把这个最优化问题转化成瑞利熵:
在这里插入图片描述
瑞利熵: 一个向量 x ∈ R m x\in \mathbb{R}^{m} xRm的瑞利熵是一个标量:
在这里插入图片描述
   它对 x x x具有尺度不变性,即对于任意 c 1 ≠ 0 ∈ R c_{1}\neq 0\in \mathbb{R} c1=0R,有 R ( x

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值