ICLR 2020|PairNorm: Tackling Oversmoothing in GNNs

本文介绍ICLR 2020论文PairNorm,针对图神经网络(GNNs)的过平滑问题提出了一种新颖的规范化层。PairNorm通过控制节点特征向量间的距离,防止节点表示趋同,有效缓解了过平滑现象。该方法高效、易于实现,适用于各种GNNs,同时分析了深层GNNs适用的场景和限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

众所周知,GNNs的表现随着层数的增加而有所下降,这在一定程度上归结于over-smoothing这一问题,重复图卷积这一操作会使得节点的表示最终变得不可区分。作者希望通过采取两种不同的理解方式来量化over-smoothing这一问题,并提出解决这一问题的方法。

ICLR专题

原文:PairNorm: Tackling Oversmoothing in GNNs

众所周知,GNNs的表现随着层数的增加而有所下降,这在一定程度上归结于over-smoothing这一问题,重复图卷积这一操作会使得节点的表示最终变得不可区分。作者希望通过采取两种不同的理解方式来量化over-smoothing这一问题,并提出解决这一问题的方法。在仔细地研究过图卷积这一操作之后,作者提出了一种新奇的normalization layer---PairNorm,来防止节点的表示变得过于相似。除此之外,PairNorm具有高效且易于实现的特点,不需要对于整个模型架构做太多的改变,也不需要增加额外的参数,广泛地适用于所有的GNNs。

文章的贡献主要如下:

(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值