Table: Activity
+--------------+---------+ | Column Name | Type | +--------------+---------+ | player_id | int | | device_id | int | | event_date | date | | games_played | int | +--------------+---------+ (player_id,event_date)是此表的主键(具有唯一值的列的组合)。 这张表显示了某些游戏的玩家的活动情况。 每一行是一个玩家的记录,他在某一天使用某个设备注销之前登录并玩了很多游戏(可能是 0)。
编写解决方案,报告在首次登录的第二天再次登录的玩家的 比率,四舍五入到小数点后两位。换句话说,你需要计算从首次登录日期开始至少连续两天登录的玩家的数量,然后除以玩家总数。
结果格式如下所示:
示例 1:
输入: Activity table: +-----------+-----------+------------+--------------+ | player_id | device_id | event_date | games_played | +-----------+-----------+------------+--------------+ | 1 | 2 | 2016-03-01 | 5 | | 1 | 2 | 2016-03-02 | 6 | | 2 | 3 | 2017-06-25 | 1 | | 3 | 1 | 2016-03-02 | 0 | | 3 | 4 | 2018-07-03 | 5 | +-----------+-----------+------------+--------------+ 输出: +-----------+ | fraction | +-----------+ | 0.33 | +-----------+ 解释: 只有 ID 为 1 的玩家在第一天登录后才重新登录,所以答案是 1/3 = 0.33
思路:本题的关键点有两个,一是要统计的是玩家首次登录后的连续上线,而是如何筛选连续两天的记录。这里首先筛选出每位玩家的首次登录时间对应的记录(为了防止出现玩家不是在首次登录后的连续登录记录的出现),然后再通过表连接,以玩家id和与首次登录的时间差为一天作为条件,最后求出总共有多少条这样的记录,就说明有多少个玩家是首次登录后第二天又登录的。
# Write your MySQL query statement below
select round(num/anum,2) fraction from
(select count(*) num from activity act
right join
(select player_id id,min(event_date) ft
from activity
group by player_id) a
on act.player_id=a.id and datediff(act.event_date,a.ft)=1
where player_id is not null) b
cross join
(select count(*) anum from
(select * from activity group by player_id) c) d;