论文精读-DeepFM

本文深入剖析DeepFM模型,从FM和DNN两部分详细阐述模型原理。DeepFM结合了FM的二阶特征交互和DNN的高阶特征学习,提高了CTR预估的泛化能力。论文中的模型结构分为FM和DNN,其中embedding过程借鉴了FM,DNN部分则采用全连接网络。作者计划补充模型推导和复现论文。
摘要由CSDN通过智能技术生成

目前的CTR预估模型,实质上都是在“利用模型”进行特征工程上狠下功夫。传统的LR,简单易解释,但特征之间信息的挖掘需要大量的人工特征工程来完成。由于深度学习的出现,利用神经网络本身对于隐含特征关系的挖掘能力,成为了一个可行的方式。DNN本身主要是针对于高阶的隐含特征,而像FNN(利用FM做预训练实现embedding,再通过DNN进行训练,有时间会写写对该模型的认识)这样的模型则是考虑了高阶特征,而在最后sigmoid输出时忽略了低阶特征本身。

鉴于上述理论,目前新出的很多基于深度学习的CTR模型都从wide、deep(即低阶、高阶)两方面同时进行考虑,进一步提高模型的泛化能力,比如DeepFM。

很多文章只是简单对论文进行了翻译,本文重点则在于详细分析模型原理,包括给出论文中略过的模型推导细节,鉴于本人小白,因此如有问题,欢迎各位大牛指出改正。之后会尝试复现论文。好了废话不多说,下面开始装逼。

首先给出论文模型图,由于文章画的很好,就直接贴图了:

可以看到,整个模型大体分为两部分:FM和DNN。简单叙述一下模型的流程:借助FNN的思想,利用FM进行embedding,之后的wide和dee

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值