考研 | 高等数学 Chapter 3

第三章 中值定理与一元微分学应用

0. Part 0 定义

  1. I f     ∃ δ > 0 , 当   0 < ∣ x − x 0 ∣ < δ   时 , f ( x ) < f ( x 0 ) ,   x 0 为 极 大 点 If \ \ \ \exists \delta>0, 当\ 0<\lvert x-x_0\rvert<\delta\ 时, f(x)<f(x_0), \ x_0为极大点 If   δ>0, 0<xx0<δ ,f(x)<f(x0), x0
  2. I f     ∃ δ > 0 , 当   0 < ∣ x − x 0 ∣ < δ   时 , f ( x ) > f ( x 0 ) ,   x 0 为 极 小 点 If \ \ \ \exists \delta>0, 当\ 0<\lvert x-x_0\rvert<\delta\ 时, f(x)>f(x_0), \ x_0为极小点 If   δ>0, 0<xx0<δ ,f(x)>f(x0), x0
  3. f ( x ) 在   x = a   取 极 值 ⇒ f ′ ( a ) = 0   或   f ′ ( a )   不 存 在 f(x)在\ x=a\ 取极值\Rightarrow f^{'}(a)=0\ 或\ f^{'}(a)\ 不存在 f(x) x=a f(a)=0  f(a) 
  4. f ( x ) 可 导 在   x = a   取 极 值 ⇒ f ′ ( a ) = 0 f(x)可导在\ x=a\ 取极值\Rightarrow f^{'}(a)=0 f(x) x=a f(a)=0
  5. f + ′ > 0 ⇒ 右 大 ,   即   ∃ x 1 > a ,   使 f ( x 1 ) > f ( a ) f^{'}_{+}>0 \Rightarrow 右大,\ 即\ \exists x_1>a, \ 使f(x_1)>f(a) f+>0,  x1>a, 使f(x1)>f(a)
  6. f + ′ < 0 ⇒ 右 大 ,   即   ∃ x 1 > a ,   使 f ( x 1 ) < f ( a ) f^{'}_{+}<0 \Rightarrow 右大,\ 即\ \exists x_1>a, \ 使f(x_1)<f(a) f+<0,  x1>a, 使f(x1)<f(a)
     

1. Part 1 中值定理

a. 罗尔定理

  1. 满足以下三点,则 ∃   ξ ∈ ( a , b ) , 使   f ′ ( ξ ) = 0 \exists \ \xi \in (a, b), 使 \ f^{'}(\xi)=0  ξ(a,b),使 f(ξ)=0
    1. f ∈ [ a , b ] f \in [a,b] f[a,b]
    2. ( a , b ) 内 可 导 (a,b)内可导 (a,b)
    3. f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)
  2. 例一
    在这里插入图片描述
  3. 例二
    在这里插入图片描述

b. 拉格朗日中值定理

  1. 设   f ( x ) ∈ C [ a , b ] , 在 ( a , b ) 内 可 导 , 则 存 在   ξ ∈ ( a , b ) , 使 得 : 设\ f(x)\in C[a,b], 在(a,b)内可导, 则存在\ \xi \in (a,b),使得:  f(x)C[a,b],(a,b), ξ(a,b),使:
    f ′ ( ξ ) = f ( b ) − f ( a ) b − a f^{'}(\xi)=\frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)
  2. Notes:
    1. I f    f ( a ) = f ( b ) , 则 拉 格 朗 日 中 值 定 理 = 罗 尔 定 理 If \ \ f(a)=f(b), 则 拉格朗日中值定理=罗尔定理 If  f(a)=f(b),=
    2. f ′ ( ξ ) = f ( b ) − f ( a ) b − a ⇔ f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) ⇔ f ( b ) − f ( a ) = f ′ [ a + ( b − a ) θ ] ( b − a ) , 其 中 ( 0 < θ < 1 ) \begin{aligned} &f^{'}(\xi)=\frac{f(b)-f(a)}{b-a} \\ &\Leftrightarrow f(b)-f(a)=f^{'}(\xi)(b-a) \\ &\Leftrightarrow f(b)-f(a)=f^{'}[a+(b-a)\theta](b-a), 其中(0<\theta<1)\end{aligned} f(ξ)=baf(b)f(a)f(b)f(a)=f(ξ)(ba)f(b)f(a)=f[a+(ba)θ](ba),(0<θ<1)

c. 柯西中值定理

  1. 满足以下三点, 则 ∃   ξ ∈ ( a , b ) \exists\ \xi \in (a,b)  ξ(a,b), 使 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{'}(\xi)}{g^{'}(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)
    1. f , g ∈ C [ a , b ] f, g \in C[a,b] f,gC[a,b]
    2. ( a , b ) (a,b) (a,b) 内可导
    3. g ′ ( x ) ≠ 0    ( a < x < b ) g^{'}(x) \neq 0\ \ (a<x<b) g(x)=0  (a<x<b)
  2. Notes:
    I f    g ( x ) = x If\ \ g(x)=x If  g(x)=x, 则 柯西 = = = 拉格朗日
     

d. 例题分析

Ⅰ. 型一

  1. 型一: f ( n ) ( ξ ) = 0 f^{(n)}(\xi)=0 f(n)(ξ)=0
  2. case 1:
    f ′ ( ξ ) = 0   ⇒ f ( ? ) = f ( ? ) f^{'}(\xi)=0 \ \Rightarrow f(?)=f(?) f(ξ)=0 f(?)=f(?)
  3. case 2:
    f ′ ′ ( ξ ) = 0   ⇒ { f ( ? )     f ( ? )     f ( ? ) f ′ ( ? ) = f ′ ( ? ) f^{''}(\xi)=0 \ \Rightarrow \left\{\begin{array}{lll}f(?)\ \ \ f(?)\ \ \ f(?) \\ f^{'}(?)=f^{'}(?)\end{array}\right. f(ξ)=0 {f(?)   f(?)   f(?)f(?)=f(?)
  4. 例题:
    1. case 1:
      在这里插入图片描述
    2. case 2:
      在这里插入图片描述

Ⅱ. 型二

  1. 型二: 仅有一个 ξ \xi ξ
  2. 方法一: 还原法
    适用场景 { 仅 有   ξ 导 数 差 一 阶 两 项 \left\{\begin{array}{lll}仅有\ \xi \\ 导数差一阶 \\ 两项\end{array}\right.  ξ, 工具 { f ′ f = ( ln ⁡ f ) ′ f ′ ′ f ′ = ( ln ⁡ f ′ ) ′ \left\{\begin{array}{lll}\frac{f'}{f}=(\ln f)' \\ \frac{f''}{f'}=(\ln f')' \end{array}\right. {ff=(lnf)ff=(lnf)
  3. 还原法例题
    1. 工具1
      在这里插入图片描述
    2. 工具2
      在这里插入图片描述
  4. 方法二: 分组法
    在这里插入图片描述

Ⅲ. 型三

  1. 型三: 有 ξ \xi ξ, 有 a , b a, b a,b
  2. case1: ξ \xi ξ a , b a,b a,b 可分离
    ξ   与   a , b   分 离 ⇒ { f ( b ) − f ( a )   或   f ( b ) − f ( a ) b − a , 拉 格 朗 日 f ( b ) − f ( a ) g ( b ) − g ( a ) ,    柯 西 \xi \ 与\ a,b\ 分离\Rightarrow \left\{\begin{array}{lll}f(b)-f(a)\ 或 \ \frac{f(b)-f(a)}{b-a}, 拉格朗日 \\ \frac{f(b)-f(a)}{g(b)-g(a)}, \qquad\qquad\qquad\ \ 柯西 \end{array}\right. ξ  a,b {f(b)f(a)  baf(b)f(a),g(b)g(a)f(b)f(a),  西
  3. case2: ξ \xi ξ a , b a,b a,b 不可分离
    { ξ → x 去 分 母 , 移 项 ⟹ 式 子 = 0 ⟹ ( ? ) ′ = 0 \left \{ \begin{array}{lll} \xi \rightarrow x \\ 去分母,移项 \end{array} \right. \Longrightarrow 式子=0 \Longrightarrow (?)'=0 {ξx,=0(?)=0
  4. 例题:
    1. case1: 柯西
      在这里插入图片描述

    2. case2:
      在这里插入图片描述

Ⅳ. 型四

  1. 型四: 有 ξ \xi ξ , 有 η \eta η
  2. case 1: 仅有 f ′ ( ξ ) , f ′ ( η ) { 1. 找 三 个 点 2. 两 次 拉 格 朗 日 f'{(\xi)}, f'{(\eta)} \left \{\begin{array}{lll} 1. 找三个点 \\ 2. 两次拉格朗日 \end{array} \right. f(ξ),f(η){1.2.
  3. case 2: 含 ξ , η \xi,\eta ξ,η 的项复杂度不同 { 1. 留 复 杂 中 值 项 2. { 1. ( ) ′ , 拉 格 朗 日 2. ( ) ′ ( ) ′ , 柯 西 \left \{ \begin{array}{lll} 1. 留复杂中值项 \\ 2. \left \{ \begin{array}{lll} 1. (\quad)', 拉格朗日 \\ 2. \frac{(\quad)'}{(\quad)'}, 柯西 \end{array}\right. \end{array}\right. 1.2.{1.(),2.()(),西
  4. 例题:
    1. case 1例题:
      在这里插入图片描述
      在这里插入图片描述
    2. case 2 例题:
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述

Ⅴ. 型五

  1. 拉格朗日的使用
    1. f ( b ) − f ( a ) ⇒ 一 次 拉 格 朗 日 f(b)-f(a)\quad \Rightarrow \quad 一次拉格朗日 f(b)f(a)
    2. f ( a ) , f ( c ) , f ( b )   或   f ′ ( a ) , f ′ ( c ) , f ′ ( b ) 两 次 拉 格 朗 日 f(a),f(c),f(b)\ 或\ f'(a),f'(c),f'(b)\quad 两次拉格朗日 f(a),f(c),f(b)  f(a),f(c),f(b)
    3. (无积分的情况下) f ⇔ f ′ f \Leftrightarrow f' ff
  2. 例题
    1. 一次拉格朗日:
      在这里插入图片描述
      在这里插入图片描述
    2. 两次拉格朗日:
      在这里插入图片描述
      在这里插入图片描述

2. Part 2 泰勒中值定理

a. 定义

f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0 的领域内 n + 1 n+1 n+1 可导, 则
f ( x ) = f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) +   ⋯   f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x)=f(x_0)=f'(x_0)(x-x_0)+\ \cdots \ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(x0)=f(x0)(xx0)+  n!f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1其中 ξ \xi ξ 介于 x 0 x_0 x0 x x x 之间
其中:
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1 称为拉格朗日型余项,
也可以表示为:
R n ( x ) = ο ( ( x − x 0 ) n ) R_n(x)=\omicron((x-x_0)^n) Rn(x)=ο((xx0)n)
称为佩亚诺型余项
 

b. 麦克劳林公式

x 0 = 0 x_0=0 x0=0时, f ( x ) = f ( 0 ) + f ′ ( 0 ) x +   ⋯   + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x)=f(0)+f'(0)x+\ \cdots \ + \frac{f^{(n)}(0)}{n!}x^n+R_n(x) f(x)=f(0)+f(0)x+  +n!f(n)(0)xn+Rn(x)称为 f ( x ) f(x) f(x) 的麦克劳林公式.
常用的麦克劳林公式有:

  1. e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + o ( x n ) \mathrm{e}^{x}=1+x+\frac{x^{2}}{2 !}+\cdots+\frac{x^{n}}{n !}+o\left(x^{n}\right) ex=1+x+2!x2++n!xn+o(xn);
  2. sin ⁡ x = x − x 3 3 ! + ⋯ + ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 + o ( x 2 n + 1 ) \sin x=x-\frac{x^{3}}{3 !}+\cdots+\frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}+o\left(x^{2 n+1}\right) sinx=x3!x3++(2n+1)!(1)nx2n+1+o(x2n+1);
  3. cos ⁡ x = 1 − x 2 2 ! + ⋯ + ( − 1 ) n ( 2 n ) ! x 2 n + o ( x 2 n ) \cos x=1-\frac{x^{2}}{2 !}+\cdots+\frac{(-1)^{n}}{(2 n) !} x^{2 n}+o\left(x^{2 n}\right) cosx=12!x2++(2n)!(1)nx2n+o(x2n);
  4. 1 1 − x = 1 + x + x 2 + ⋯ + x n + o ( x n ) \frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+o\left(x^{n}\right) 1x1=1+x+x2++xn+o(xn);
  5. 1 1 + x = 1 − x + x 2 − ⋯ + ( − 1 ) n x n + o ( x n ) \frac{1}{1+x}=1-x+x^{2}-\cdots+(-1)^{n} x^{n}+o\left(x^{n}\right) 1+x1=1x+x2+(1)nxn+o(xn);
  6. ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ + ( − 1 ) n − 1 n x n + o ( x n ) \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+\frac{(-1)^{n-1}}{n} x^{n}+o\left(x^{n}\right) ln(1+x)=x2x2+3x3+n(1)n1xn+o(xn);
  7. ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + ⋯ + a ( a − 1 ) ⋯ ( a − n + 1 ) n ! x n + o ( x n ) (1+x)^{a}=1+a x+\frac{a(a-1)}{2 !} x^{2}+\cdots+\frac{a(a-1) \cdots(a-n+1)}{n !} x^{n}+o\left(x^{n}\right) (1+x)a=1+ax+2!a(a1)x2++n!a(a1)(an+1)xn+o(xn);
  8. arctan ⁡ x = x − x 3 3 + x 5 5 − ⋯ + ( − 1 ) n 2 n + 1 x 2 n + 1 + o ( x 2 n + 1 ) \arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots+\frac{(-1)^{n}}{2 n+1} x^{2 n+1}+o\left(x^{2 n+1}\right) arctanx=x3x3+5x5+2n+1(1)nx2n+1+o(x2n+1).

c. 例题

在这里插入图片描述在这里插入图片描述

3. Part 3 单调性与极值

a. 定义

y = f ( x )    ( x ∈ D ) y = f(x)\ \ (x\in D) y=f(x)  (xD)

  1. I f    ∃ ξ > 0 ,   当   0 < ∣ x − x 0 ∣ < ξ   时 , f ( x ) < f ( x 0 ) ,   则   x 0   为 极 大 值 点 ,   f ( x 0 )   为 极 大 值 . If\ \ \exists \xi>0,\ 当\ 0<|x-x_0|<\xi\ 时, f(x) < f(x_0),\ 则\ x_0\ 为极大值点, \ f(x_0)\ 为极大值. If  ξ>0,  0<xx0<ξ ,f(x)<f(x0),  x0 , f(x0) .
  2. 反之则反之.

b. 步骤

给定 y = f ( x ) y=f(x) y=f(x)

  1. x   ∈ D x \ \in D x D
  2. f ′ ( x ) = { 0 → 怀 疑 对 象 不 存 在 f^{'}(x)= \left\{\begin{array}{lll}0 \rightarrow 怀疑对象 \\ 不存在 \end{array}\right. f(x)={0怀
  3. 判别法
    1. Th1: 第一充分条件
      { x < x 0 , f ′ > 0 x > x 0 , f ′ < 0 ⇒ x = x 0   为 极 大 值 点 \left \{ \begin{array}{lll} x<x_0, \quad f' >0 \\ x>x_0, \quad f'<0 \end{array}\right. \Rightarrow x=x_0\ 为极大值点 {x<x0,f>0x>x0,f<0x=x0 
      反之则反之
    2. 第二充分条件
      设   f ′ ( x ) = 0 , { f ′ ′ ( x 0 ) > 0 ⇒ x = x 0   为 极 小 值 点 f ′ ′ ( x 0 ) < 0 ⇒ x = x 0   为 极 大 值 点 设\ f^{'}(x)=0, \left\{\begin{array}{lll} f''(x_0) > 0 \quad \Rightarrow\quad x=x_0\ 为极小值点 \\ f''(x_0)<0 \quad \Rightarrow \quad x=x_0\ 为极大值点 \end{array}\right.  f(x)=0,{f(x0)>0x=x0 f(x0)<0x=x0 

c. 例题

Ⅰ. 型一: 极值点的判断

在这里插入图片描述


在这里插入图片描述
 

Ⅱ. 函数的零点或方程的根

  1. 零点定理:
    f ( x )   ∈   C [ a , b ] ,   f ( a ) f ( b ) < 0   ⇒   ∃ C ∈ ( a , b ) ,   使   f ( c ) = 0 f(x)\ \in \ C[a,b], \ f(a)f(b)<0\ \Rightarrow\ \exists C\in(a,b), \ 使\ f(c)=0 f(x)  C[a,b], f(a)f(b)<0  C(a,b), 使 f(c)=0
  2. 罗尔定理:
    令   [ F ( x ) ] ′ = f ( x ) 令\ [F(x)]'=f(x)  [F(x)]=f(x)
    I f   F ( a ) = F ( b ) ,   ⇒ ∃ C ∈ ( a , b ) ,   使   F ′ ( C ) = f ( C ) = 0 If \ F(a)=F(b), \ \Rightarrow \exists C\in(a,b), \ 使\ F'(C)=f(C)=0 If F(a)=F(b), C(a,b), 使 F(C)=f(C)=0
  3. 单调性
    1. f ( x ) =   ? f(x)=\ ? f(x)= ?
    2. f ′ ( x ) = { 0 无 穷 ⇒ 极 值 点 ; 极 值 f'(x)=\left \{ \begin{array}{lll} 0 \\ 无穷 \end{array}\right. \quad \Rightarrow\quad 极值点;极值 f(x)={0;
    3. 关注两侧走势
  4. 例题:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

Ⅲ. 不等式证明

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 

4. Part 4 凹凸性问题

a. 凹凸性

  1. I f   ∀ x 1 , x 2 ∈ D ,   且   x 1 ≠ x 2 ,   有   f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 If\ \forall x_1,x_2 \in D, \ 且\ x_1 \neq x_2,\ 有\ f(\frac{x_1+x_2}{2}) < \frac{f(x_1)+f(x_2)}{2} If x1,x2D,  x1=x2,  f(2x1+x2)<2f(x1)+f(x2) , 则称 f ( x ) f(x) f(x) D D D 上为凹函数.
  2. 反之, 则反之
  3. x = x 0 x=x_0 x=x0 两侧凹凸性不同, 则 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0)) 称为拐点.

b. 判别法

设   f ( x ) ∈ [ a , b ] ,   ( a , b )   内 二 阶 可 导 设\ f(x) \in [a,b], \ (a,b)\ 内二阶可导  f(x)[a,b], (a,b) 

  1. I f    f ′ ′ ( x ) > 0   ( a < x < b ) ⇒ f ( x ) 在 [ a , b ] 上 为 凹 If\ \ f''(x)>0\ (a<x<b)\quad \Rightarrow \quad f(x)在[a,b]上为凹 If  f(x)>0 (a<x<b)f(x)[a,b]
  2. 反之, 则反之

c. 渐进线

  1. 水平渐进线
  2. 铅直渐进线
  3. 斜渐进线
    I f { lim ⁡ x → ∞ f ( x ) x = a ( ≠ 0 , ≠ ∞ ) lim ⁡ x → ∞ [ f ( x ) − a x ] = b If \left \{ \begin{array}{lll} \lim_{x \rightarrow \infty}\frac{f(x)}{x}=a(\neq0,\neq \infty) \\ \lim_{x \rightarrow \infty}[f(x)-ax]=b \end{array}\right. If{limxxf(x)=a(=0,=)limx[f(x)ax]=b, 则称 y = a x + b y=ax+b y=ax+b 为斜渐近线
  4. 例题
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

d. 弧微分

在这里插入图片描述

e. 曲率

曲率 ρ = ∣ y ′ ′ ( 1 + y ′ 2 ) 3 2 ∣ \rho=\left |\frac{y''}{(1+y'^2)^{\frac{3}{2}}} \right| ρ=(1+y2)23y
 

5. Part 5 例题

Part 1

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

Part 2

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


Part 3

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


Part 4

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值