GitHub仓库的内容如下图所示,欢迎提issue,也欢迎在评论区提问~
https://github.com/Jad-Goh/tt100k_2021

一、TT100K数据集格式转换
1、使用tt100k2coco.py文件将格式转换为coco格式。
2、使用move.py文件的read_name函数按照coco格式创建train2017.txt、val2017.txt和test2017.txt三个文件;使用move_file函数创建对应的目录,移动对应的图片到对应的目录,目录格式如下图所示。

二、BDD100K数据集格式转换
1、使用bdd2yolo.py文件将.xml文件转换为满足yolo格式要求的.txt文件,如下图所示:

注:格式说明
VOC格式:
PASCAL VOC数据集由5个部分构成:JPEGImages,Annotations,ImageSets,SegmentationClass以及SegmentationObject。
JPEGImages:存放的是训练与测试的所有图片。
Annotations:里面存放的是每张图片打完标签所对应的XML文件
ImageSets:ImageSets文件夹下本次讨论的只有Main文件夹,此文件夹中存放的主要又有四个文本文件test.txt,train.txt,trainval.txt,val.txt,其中分别存放的是测试集图片的文件名、训练集图片的文件名、训练验证集图片的文件名、验证集图片的文件名。
SegmentationClass与SegmentationObject:存放的都是图片,且都是图像分割结果图,对目标检测任务来说没有用。class segmentation 标注出每一个像素的类别 。object segmentation 标注出每一个像素属于哪一个物体
链接:https://www.jianshu.com/p/8b43094d5ed4
bbox是xmin,ymin,xmax,ymax格式(没有归一化)。
COCO格式:
由三个.json文件和三个.txt文件来保存对应train、val和test数据集的图片路径和annotation。bbox是x,y,w,h格式(没有归一化)。

YOLO格式:
x,y,w,h(归一化)。
