传纸条(一)
-
描述
-
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-1000的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度之和最大。现在,请你帮助小渊和小轩找到这样的两条路径。-
输入
-
第一行输入N(0<N<100)表示待测数据组数。
每组测试数据输入的第一行有2个用空格隔开的整数m和n,表示班里有m行n列(2<=m,n<=50)。
接下来的m行是一个m*n的矩阵,矩阵中第i行j列的整数表示坐在第i行j列的学生的好心程度(不大于1000)。每行的n个整数之间用空格隔开。
输出
-
每组测试数据输出共一行,包含一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。
样例输入
-
1 3 3 0 3 9 2 8 5 5 7 0
样例输出
-
34
http://acm.nyist.net/JudgeOnline/problem.php?pid=61
非常经典的一道题,在很多地方都见到,双进程动规
dp[t][i][j]表示在t时刻,a所在x坐标为i,b所在x坐标为j
状态转移方程:
dp[k][i][j] = max(dp[k-1][i-1][j],dp[k-1][i-1][j-1],dp[k-1][i][j],dp[k-1][i][j-1]) + a[i][k-i+2] + a[j][k-j+2]);
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int a[54][54], dp[102][54][54]; /*dp[k][x][y]表示第k步时纸条在纵坐x和纵坐标y处时的最优解*/ int main(void) /*两张纸条各传一次算一步*/ /*因为横坐标等于k-x+2,所以可以省略,否则要定义五维数组很浪费空间*/ { int T, m, n, c, i, j, k, t; scanf("%d", &T); while(T--) { memset(dp, 0, sizeof(dp)); scanf("%d%d", &n, &m); c = m+n-2; /*从起点(1,1)走向终点(n,m)需要c步*/ for(i=1;i<=n;i++) { for(j=1;j<=m;j++) scanf("%d", &a[i][j]); } dp[1][1][2] = a[1][2]+a[2][1]; /*第一步显然只有一种情况*/ for(k=2;k<=c-1;k++) /*没有必要判定第一步最后一步*/ { t = k+1; /*很显然在第k秒时,纸条所在的纵坐标不可能会超过k+1*/ for(i=1;i<=t;i++) { for(j=i+1;j<=t;j++) /*总有一个纸条在另一个纸条的下面,因为它们在第k步时纵坐标不可能相等*/ dp[k][i][j] = max(max(dp[k-1][i-1][j],dp[k-1][i-1][j-1]), max(dp[k-1][i][j],dp[k-1][i][j-1]))+a[i][k-i+2]+a[j][k-j+2]; } } dp[c][n][n] = dp[c-1][n-1][n]; /*最后一步显然也只有一种情况*/ printf("%d\n", dp[c][n][n]); } return 0; }
-
第一行输入N(0<N<100)表示待测数据组数。