NYOJ 61:传纸条(一)(三维DP)

传纸条(一)

时间限制: 2000 ms  |  内存限制: 65535 KB
难度: 5
描述

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。 

在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。


还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-1000的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度之和最大。现在,请你帮助小渊和小轩找到这样的两条路径。

输入
第一行输入N(0<N<100)表示待测数据组数。
每组测试数据输入的第一行有2个用空格隔开的整数m和n,表示班里有m行n列(2<=m,n<=50)。 
接下来的m行是一个m*n的矩阵,矩阵中第i行j列的整数表示坐在第i行j列的学生的好心程度(不大于1000)。每行的n个整数之间用空格隔开。
输出
每组测试数据输出共一行,包含一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。 
样例输入
1
3 3
0 3 9
2 8 5
5 7 0
样例输出
34


http://acm.nyist.net/JudgeOnline/problem.php?pid=61

非常经典的一道题,在很多地方都见到,双进程动规

dp[t][i][j]表示在t时刻,a所在x坐标为i,b所在x坐标为j

状态转移方程:

dp[k][i][j] = max(dp[k-1][i-1][j],dp[k-1][i-1][j-1],dp[k-1][i][j],dp[k-1][i][j-1]) + a[i][k-i+2] + a[j][k-j+2]);


#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[54][54], dp[102][54][54];    /*dp[k][x][y]表示第k步时纸条在纵坐x和纵坐标y处时的最优解*/
int main(void)							/*两张纸条各传一次算一步*/	/*因为横坐标等于k-x+2,所以可以省略,否则要定义五维数组很浪费空间*/
{
	int T, m, n, c, i, j, k, t;
	scanf("%d", &T);
	while(T--)
	{
		memset(dp, 0, sizeof(dp));
		scanf("%d%d", &n, &m);
		c = m+n-2;		/*从起点(1,1)走向终点(n,m)需要c步*/
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=m;j++)
				scanf("%d", &a[i][j]);
		}
		dp[1][1][2] = a[1][2]+a[2][1];  /*第一步显然只有一种情况*/
		for(k=2;k<=c-1;k++)  /*没有必要判定第一步最后一步*/
		{
			t = k+1;		/*很显然在第k秒时,纸条所在的纵坐标不可能会超过k+1*/
			for(i=1;i<=t;i++)
			{
				for(j=i+1;j<=t;j++)    /*总有一个纸条在另一个纸条的下面,因为它们在第k步时纵坐标不可能相等*/
					dp[k][i][j] = max(max(dp[k-1][i-1][j],dp[k-1][i-1][j-1]), max(dp[k-1][i][j],dp[k-1][i][j-1]))+a[i][k-i+2]+a[j][k-j+2];
			}
		}
		dp[c][n][n] = dp[c-1][n-1][n]; /*最后一步显然也只有一种情况*/
		printf("%d\n", dp[c][n][n]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值