Lucas+阶乘打表+费马小定理模板2.0

目的:输入m, n, p,求出C(m,n)%p的精确值

基础:

1、费马小定理:已知整数a和质数p,其中Gcd(a, p)==1,那么a^(p-1)%p==1恒成立

2、要求出(a/b)%p的值(p一定为质数),可将其转化为a*b^(-1)%p,其中b^(-1)为b的逆元,而因为

b^(p-1)%p==1,所以b与b^(p-2)互为逆元,所以(a/b)%p==a*b^(p-2)%p

Lucas步骤:

1、C(m,n)%p = C(m/p, n/p)%p * C(m%p, n%p)%p(递归)

2、C(m,n)%p = (m!/(m-n)! / n!)%p = (m!/(m-n)! * (n!)^(p-2))%p(对于上面的C(m%p, n%p)%p进行计算)

3、用快速幂计算x^(p-2)


版本1:直接计算C(m,n)

#include<stdio.h>
#define LL long long
LL Pow(LL a, LL b, LL mod);
LL C(LL m, LL n, LL p);
LL Lucas(LL m, LL n, LL p);
int main(void)
{
	LL m, n, p;
	while(scanf("%lld%lld%lld", &m, &n, &p)!=EOF)	/*输入保证p为质数*/
		printf("%lld\n", Lucas(m, n, p));
	return 0;
}

LL Pow(LL a, LL b, LL mod)
{
	LL sum;
	sum = 1;
	while(b)
	{
		if(b%2==1)
			sum = (sum*a)%mod;
		a = (a*a)%mod;
		b /= 2;
	}
	return sum;
}

LL C(LL m, LL n, LL p)    
{
	LL i, ans;
	ans = 1;
	if(m<n)
		return 0;
	for(i=1;i<=n;i++)
		ans = ans*(((m-n+i)%p)*Pow(i, p-2, p)%p)%p;
	return ans;
}

LL Lucas(LL m, LL n, LL p) 
{
	if(m==0)
		return 1;
	return (Lucas(m/p, n/p, p)*C(m%p, n%p, p))%p;
}




版本2:

lightoj 1067 - Combinations(求C(n,m),n和m都小于1000000,但有百万组测试实例)

这个时候需要对阶乘打表,并直接用组合数公式


#include<stdio.h>
#define LL long long
LL Pow(LL a, LL b, LL mod);
LL C(LL m, LL n, LL p);
LL Lucas(LL m, LL n, LL p);
long long jc[1000005] = {1};
int main(void)
{
	int T, cas, i;
	LL m, n, p;
	p = 1000003;
	for(i=1;i<=1000000;i++)
		jc[i] = (jc[i-1]*i)%p;
	scanf("%d", &T);
	cas = 1;
	while(T--)
	{
		scanf("%lld%lld", &n, &m);
		printf("Case %d: %lld\n", cas++, Lucas(n, m, p));
	}
	return 0;
}

LL Pow(LL a, LL b, LL mod)
{
	LL ans;
	ans = 1;
	while(b)
	{
		if(b%2==1)
			ans = (ans*a)%mod;
		a = (a*a)%mod;
		b /= 2;
	}
	return ans;
}

LL C(LL n, LL m, LL p)    
{
	LL ans;
	if(n<m)
		return 0;
	ans = (jc[n]*Pow((jc[m]*jc[n-m])%p, p-2, p)%p)%p;
	return ans;
}

LL Lucas(LL n, LL m, LL p) 
{
	if(m==0)
		return 1;
	return (Lucas(n/p, m/p, p)*C(n%p, m%p, p))%p;
}


其实到这里,你会发现很多时候Lucas并用不到,主要是求组合数

而是上面的程序只是将阶乘打了表,逆元还是暴力计算幂次方

所以有了版本3(速度最快,O(1)查询):阶乘打表+线性求逆元(完全预处理)


#include<stdio.h>
#define LL long long
#define mod 1000000007
LL Pow(LL a, LL b);
LL C(LL m, LL n);
LL Lucas(LL m, LL n);
LL Fan(LL n, LL m);
LL inv[2000005] = {1}, jc[2000005] = {1};
int main(void)
{
	LL T, m, n, k, i;
	for(i=1;i<=2000001;i++)
		jc[i] = (jc[i-1]*i)%mod;
	inv[2000001] = Pow(jc[2000001], mod-2);
	for(i=2000000;i>=1;i--)
		inv[i] = inv[i+1]*(i+1)%mod;
	scanf("%lld", &T);
	while(T--)
	{
		scanf("%lld%lld%lld", &n, &m, &k);
		printf("%lld\n", Fan(m-1, m-k)*Fan(n-(m-k), n-m)%mod);
	}
	return 0;
}
LL Fan(LL n, LL m)
{
	LL all;
	all = n+m;
	return (C(all, n)-C(all, n+1)+mod)%mod;
}
LL Pow(LL a, LL b)
{
	LL ans;
	ans = 1;
	while(b)
	{
		if(b%2==1)
			ans = (ans*a)%mod;
		a = (a*a)%mod;
		b /= 2;
	}
	return ans;
}
LL C(LL n, LL m)
{
	LL ans;
	if(n<m)
		return 0;
	ans = jc[n]*inv[m]%mod*inv[n-m]%mod;
	return ans;
}


  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值