# poj 3186 && bzoj 1652: [Usaco2006 Feb]Treats for the Cows（DP）

## 1652: [Usaco2006 Feb]Treats for the Cows

Time Limit: 5 Sec   Memory Limit: 64 MB
Submit: 415   Solved: 318
[ Submit][ Status][ Discuss]

## Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. The treats are interesting for many reasons: * The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats. * Like fine wines and delicious cheeses, the treats improve with age and command greater prices. * The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000). * Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a. Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

•零食按照1．．N编号，它们被排成一列放在一个很长的盒子里．盒子的两端都有开口，约翰每
天可以从盒子的任一端取出最外面的一个．
•与美酒与好吃的奶酪相似，这些零食储存得越久就越好吃．当然，这样约翰就可以把它们卖 出更高的价钱．
•每份零食的初始价值不一定相同．约翰进货时，第i份零食的初始价值为Vi(1≤Vi≤1000)．
•第i份零食如果在被买进后的第a天出售，则它的售价是vi×a．
Vi的是从盒子顶端往下的第i份零食的初始价值．约翰告诉了你所有零食的初始价值，并 希望你能帮他计算一下，在这些零食全被卖出后，他最多能得到多少钱．

## Input

* Line 1: A single integer,

N * Lines 2..N+1: Line i+1 contains the value of treat v(i)

## Output

* Line 1: The maximum revenue FJ can achieve by selling the treats

5
1
3
1
5
2

## Sample Output

43

kuangbin带你飞里也有

dp[i][j]表示剩下的牛是第i个到第j个时的最大价值

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[2005], dp[2005][2005] = {0};
int main(void)
{
int i, j, n, ans;
while(scanf("%d", &n)!=EOF)
{
memset(dp, 0, sizeof(dp));
for(i=1;i<=n;i++)
scanf("%d", &a[i]);
for(i=1;i<=n;i++)
{
for(j=n;j>=i;j--)
{
if(i!=1)
dp[i][j] = max(dp[i][j], dp[i-1][j]+a[i-1]*(n-j+i-1));
if(j!=n)
dp[i][j] = max(dp[i][j], dp[i][j+1]+a[j+1]*(n-j+i-1));
}
}
ans = 0;
for(i=1;i<=n;i++)
ans = max(ans, dp[i][i]+a[i]*n);
printf("%d\n", ans);
}
return 0;
}

01-24 1672
08-03 5923
05-06 823
08-22 781
04-18 690
01-19 437
01-22 552
03-25 696
03-11 2466
04-19 1838