bzoj 3111: [Zjoi2013]蚂蚁寻路(DP)

3111: [Zjoi2013]蚂蚁寻路

题目描述 Description
在一个 n*m 的棋盘上,每个格子有一个权值,初始时,在某个格子的顶点
处一只面朝北的蚂蚁,我们只知道它的行走路线是如何转弯,却不知道每次转弯
前走了多长。蚂蚁转弯是有一定特点的,即它的转弯序列一定是如下的形式:
右转,右转,左转,左转,右转,右转…左转,左转,右转,右转,右转。
即两次右转和两次左转交替出现的形式,最后两次右转(最后两次一定是
右转)后再多加一次右转。我们还知道,蚂蚁不会在同一个位置连续旋转两次,
并且蚂蚁行走的路径除了起点以外,不会到达同一个点多次,它最后一定是回
到起点然后结束自己的行程,而且蚂蚁只会在棋盘格子的顶点处转弯。
设 k为蚂蚁左转的次数除以2,当k=0 时,蚂蚁可能行走的路径如下图


转弯序列为:右转,右转,右转。
当 k=1 时,蚂蚁可能行走的路径如下图


转弯序列为:右转,右转,左转,左转,右转,右转,右转。
现在已知棋盘大小、每个格子的权值以及左转次数/2 的值,问蚂蚁走出
的路径围出的封闭图形,权值之和最大可能是多少。


输入描述 Input Description
在输入文件ant.in 中,第一行三个数n,m,k。意义如题目描述。
接下来一个n 行m 列的整数矩阵,表示棋盘。
输出描述 Output Description
一个数,表示蚂蚁所走路径围出的图形可能的最大权
值和。
样例输入 Sample Input
2 5 2
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
样例输出 Sample Output
-8
数据范围及提示 Data Size & Hint
【样例说明】
除了第一行的第二个和第一行的第四个都要围起来才至少合法。
【数据规模与约定】
10%的数据所有格子中权值均非负
另20%的数据n=2
另30%的数据k=0
100%的数据1≤n≤100,1≤m≤100,0≤k≤10 保证存在合法路径,数据有梯度,格子中每个元素的值绝对值不超过 10000


分析:

蚂蚁走的区域一定是以下形状:左边右边下面都是平的,上面凹凸不平,但一定是一凸一凹一凸一凹一凸……

就如样例的第二张图,可以理解为若干个矩形连在一起,底在一条线上,高h满足h1>h2<h3>h4<h5……

dp[i][j][x][p]表示当前是第k个矩形,右下角那个点在坐标(i, j)上,右上角那个点在坐标(x, j)上能包住的最大数字和


#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define inf 1000000005
int a[102][102], sum[102][102], dp[102][102][102][22];
int main(void)
{
	int n, m, k, i, j, h, p, ans, now;
	scanf("%d%d%d", &n, &m, &k);
	k = k*2+1;
	for(i=1;i<=n;i++)
	{
		for(j=1;j<=m;j++)
			scanf("%d", &a[i][j]);
	}
	for(j=1;j<=m;j++)
	{
		for(i=n;i>=1;i--)
			sum[i][j] = sum[i+1][j]+a[i][j];
	}
	ans = -inf;
	memset(dp, -62, sizeof(dp));
	for(j=1;j<=m;j++)
	{
		for(i=1;i<=n;i++)
		{
			for(h=1;h<=i;h++)
			{
				if(j==1)
					dp[i][j][h][1] = sum[h][1]-sum[i+1][1];
				else
					dp[i][j][h][1] = max(dp[i][j-1][h][1], 0)+sum[h][j]-sum[i+1][j];
				if(k==1)
					ans = max(ans, dp[i][j][h][1]);
			}
		}
	}
	for(p=2;p<=k;p++)
	{
		for(j=1;j<=m;j++)
		{
			for(i=n;i>=1;i--)
			{
				if(p%2==0)
				{
					now = -inf;
					for(h=2;h<=i;h++)
					{
						now = max(now, dp[i][j-1][h-1][p-1]);
						dp[i][j][h][p] = max(dp[i][j-1][h][p], now)+sum[h][j]-sum[i+1][j];
						if(p==k)  ans = max(ans, dp[i][j][h][p]);
					}
				}
				else
				{
					now = -inf;
					for(h=i-1;h>=1;h--)
					{
						now = max(now, dp[i][j-1][h+1][p-1]);
						dp[i][j][h][p] = max(dp[i][j-1][h][p], now)+sum[h][j]-sum[i+1][j];
						if(p==k)  ans = max(ans, dp[i][j][h][p]);
					}
				}
			}
		}
	}
	//printf("%d\n", dp[5][4][3][3]);
	printf("%d\n", ans);
	return 0;
}
/*
5 5 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
*/


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值