gym平衡木训练Q-learning完整代码

本文介绍了如何使用Python的gym库和Q-learning算法在CartPole-v0环境中训练一个AI模型,通过离散化状态和动作,实现强化学习过程中的决策制定和Q-table更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

安装

pip install gym

编码运行

#coding=utf8

import gym
import numpy as np

env = gym.make('CartPole-v0')

max_number_of_steps = 200   # 每一场游戏的最高得分
#---------获胜的条件是最近100场平均得分高于195-------------
goal_average_steps = 195
num_consecutive_iterations = 100
#----------------------------------------------------------
num_episodes = 5000 # 共进行5000场游戏
last_time_steps = np.zeros(num_consecutive_iterations)  # 只存储最近100场的得分(可以理解为是一个容量为100的栈)

# q_table是一个256*2的二维数组
# 离散化后的状态共有4^4=256中可能的取值,每种状态会对应一个行动
# q_table[s][a]就是当状态为s时作出行动a的有利程度评价值
# 我们的AI模型要训练学习的就是这个映射关系表
q_table = np.random.uniform(low=-1, high=1, size=(4 ** 4, env.action_space.n))

# 分箱处理函数,把[clip_min,clip_max]区间平均分为num段,位于i段区间的特征值x会被离散化为i
def bins(clip_min, clip_max, num):
    return np.linspace
### Q-Learning算法代码可视化的工具与方法 对于Q-Learning算法的代码可视化,可以采用多种Python库来实现不同层面的理解和展示。这些工具不仅有助于直观理解强化学习过程中的状态转移、奖励机制以及策略更新,还能帮助开发者调试并优化模型性能。 #### 使用Matplotlib绘制训练进度图表 为了跟踪Q-Learning的学习进展,可以通过记录每轮迭代后的累积奖励或平均步数等指标,并利用`matplotlib`库创建折线图或其他形式的时间序列分析图形[^1]。 ```python import matplotlib.pyplot as plt def plot_learning_curve(rewards): """Plotting learning curve using accumulated rewards.""" plt.figure(figsize=(8, 6)) plt.plot(range(len(rewards)), rewards) plt.title('Learning Curve') plt.xlabel('Episode') plt.ylabel('Accumulated Reward') plt.show() ``` #### 利用Gym环境配合动画效果显示决策路径 OpenAI Gym提供了一系列预定义的任务场景,非常适合用于测试各种类型的RL算法。通过自定义渲染函数,在每次采取行动之后刷新屏幕上的图像帧,能够生动再现智能体探索环境的过程[^3]。 ```python env.render() # Render the environment at each step during an episode. ``` #### 借助TensorBoard监控多维度数据变化趋势 TensorBoard是一个强大的日志记录平台,最初设计用来辅助 TensorFlow 的开发工作,但现在已支持PyTorch等多种框架下的实验管理。借助其丰富的插件生态系统,比如Scalar Dashboard、Graph Visualization等特性,可方便地比较多个超参数配置下Q-table收敛情况的不同表现[^2]. ```python from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter(log_dir='./logs/qlearning') for i_episode in range(num_episodes): writer.add_scalar('Reward', total_reward, global_step=i_episode) writer.close() ``` 除了上述提到的技术手段外,还有其他一些专门针对机器学习项目的交互式仪表盘解决方案可供选择,例如Dash by Plotly 或 Streamlit,它们允许快速搭建Web应用程序界面,让用户更便捷地浏览历史运行记录并与之互动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值