北京大学法律大模型——高质量数据、MoE架构、多智能体协同

![[Pasted image 20241218210806.png]]

论文链接:https://arxiv.org/abs/2306.16092
代码链接:https://github.com/PKU-YuanGroup/ChatLaw?tab=readme-ov-file

本次解读的论文是北京大学袁粒课题组发表的《Chatlaw: A Multi-Agent Collaborative Legal Assistant with Knowledge Graph Enhanced Mixture-of-Experts Large Language Model》

前言

袁粒老师博士毕业于新加坡南洋理工大学,指导老师有颜水成(前昆仑万维首席科学家)、冯佳时(现字节豆包大模型视觉基础研究团队负责人),大模型人脉、资源非常不错。不仅如此,也是开源项目opensora的发起者。

贡献

  • 高质量数据,包括四百万问答、案件分类、法规预测、文书起草等任务数据,并且构建知识图谱。
  • MoE结构的LLM,基于InternLM模型的MoE架构
  • 基于多智能体的法律咨询标准操作流程(SOP),Legal Assistant不断地和用户交互,明确用户问题;Legal Researcher利用RAG技术,查询最相关的外部知识;Lawyer用于提供咨询建议;Legal Editor用于生成咨询文书。

高质量数据

首先从多个来源中采集数据;其次借助自动化工具对数据去重和去噪,构成QA对数据;再次请法律方向的学生进行案件分类、请法律专家进行实体关系抽取,构建法律知识图谱及多任务数据。
![[Pasted image 20241218213819.png]]

数据集具备如下特性:

  • 量级约400万

  • 数据包含10个大类,44个小类![[Pasted image 20241218212503.png]]

  • 数据集囊括问答、案件分类、法规预测、文书起草等任务数据

MoE结构的LLM

模型结构

chatlaw有v1和v2版本,v1基于llama微调,v2基于InternLM的MoE架构模型微调(本文是v2的工作)
![[Pasted image 20241218213837.png]]

效果

在两个数据集上进行评测,第一个是LawBench数据集,第二个是China’s Unified Qualification Exam for Legal Professionals数据集。

  • LawBench数据集综合指标
    ![[Pasted image 20241218213302.png]]

  • Lawbench数据集多维度指标![[Pasted image 20241218213419.png]]

  • China’s Unified Qualification Exam for Legal Professionals数据集综合指标![[Pasted image 20241218213437.png]]

整体看下来,确实取得了sota的效果,但领先幅度并不大。例如LawBench数据集上,Chatlaw综合评分60.08,GPT-4综合评分52.35,人家GPT-4还没有在法律数据下精调。

基于多智能体的法律咨询标准操作流程(SOP)

![[Pasted image 20241218213858.png]]

Chatlaw利用多智能体,来模拟真实法律咨询的标准操作流程(Standard Operation Procedure, SOP)。本工作将法律咨询分为四个子流程,分别是Legal Assistant, Legal Researcher, Lawyer, and Legal Editor。

Legal Assistant

该步骤比较有启发性。类似于真实的法律咨询场景,律师会不断和用户交流,以获得精确的信息。根本原因在于用户难以将问题完整、准确的提炼出来,问不准,自然也答不准。
Legal Assistant的完整流程是:

  • 用户提出问题
  • 在建好的知识图谱上,对用户问题进行实体链接,获得对应的实体集合
  • 由于问题不够精确,需要基于已有的实体集合,向用户提问,一方面扩展实体范围,一方面过滤噪声实体。
  • 最终得到完整的法律咨询子图

Legal Researcher

调用外部搜索工具,保证知识的实时性,流程有:

  • 将法律咨询子图构建成关键词pair
  • 基于关键词pair,调用搜索系统,获取相关的互联网和本地知识
  • 采用大模型进行检索内容的相关性排序
  • 利用critic模型进行数据的审核、过滤
  • 得到chatlaw回答的补充知识

Lawyer

基于用户问题、补充知识,生成法律咨询建议。

Legal Editor

基于用户问题、补充知识、模板,生成法律咨询文书。

上述流程的案例如下:
![[Pasted image 20241218215637.png]]

最终主观评测

将最终系统和GPT-4, GPT-3.5, Baichuan2, ChatGLM2, InternLM2, Qwen, and Fuzi进行实际法律咨询主观评测,效果如下:

  • 从Completeness、Correctness、Guidance、Authority四个维度来看,Chatlaw具备优势,但优势不明显。![[Pasted image 20241218220101.png]]

  • 从两两模型对战的胜负率来看,Chatlaw具备优势,但优势不明显。![[Pasted image 20241218220213.png]]

总结

Chatlaw的整体流程非常复杂,需要构建图谱,多智能体协同。以图谱来说,知识图谱的构建成本很高,而且难以保证知识的实时性。然而,高成本却没有带来显著的性能提升,比较遗憾。但Chatlaw提出一种和用户交流、反馈的机制,非常具有启发性。在实际场景,用户很难准确地提出问题,而和用户不断地交互,就能有效地明确用户的意图,保证回答的准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖头鱼爱算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值