大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调重新阅读。而最新科技(Mamba,xLSTM,KAN)则提供了大模型领域最新技术跟踪。若对于构建生产级别架构则可以关注AI架构设计专栏。技术宅麻烦死磕LLM背后的基础模型。
关于机器人学习,标准做法是使用针对特定机器人和手头工作量身定制的数据集来训练策略。以这种方式从头开始需要为每项活动收集大量数据,并且生成的策略通常表现出很少的通用性。的确针对机器人和工作中收集的数据是最靠谱的解决方案,针对各种控制场景训练模型可以增强它们的泛化能力并在后续任务中表现更好。
与计算机视觉和自然语言处理中通用模型的普遍性相比,创建能够控制各种机器人的“通用机器人模型”已被证明是一项艰巨的挑战。处理具身智能、传感器配置、动作空间、任务规范、环境和计算预算是训练机器人统一控制策略时的独特问题。
一些机构通过将机器人观察结果直接转化为动作来实现通用机器人模型,在通过zero-shot或者few-shot将模型扩展到新领域和新的机器人。由于这些模型在各种活动、环境和机器人系统中的低层次视动控制的多功能性,它们通常被称为‘通用机器人策略’(Generalist Robot Policies,简称 GRP