◼ 伦理准则侧重于公平、尊重、责任、诚信、质量、可靠性、透明度和信任等方面。数据处理伦理指:如何以符合伦理准则的方式获取、存储、管理、使用和销毁数据。P28
◼ 数据处理伦理主要集中:1对人的影响; 2滥用的可能;3数据的经济价值。P28
◼ 数据处理伦理定义:如何以符合道德准则及社会责任的方式去获取、存储、管理、解释、分析、应用和销毁数据。P29
◼ 数据处理伦理目标:【定义规范;教导员工;改变文化;监控行为】【定教改监】P29
1)定义组织中数据处理的伦理规范;
2)教导员工不正当处理数据会产生的风险;
3)改变或渗透数据处理行为文化;
4)监管、度量、监控和调整组织伦理准则行为。
◼ 数据处理伦理方法:沟通计划清单;年度伦理宣誓大会。 P29
◼ 数据伦理度量指标:培训员工人数;合规/不合规事件;高管参与。P29
◼ 业务驱动因素:提高组织本身、数据、数据处理结果的可信度;降低数据被员工、客户、合作伙伴滥用的风险。P29
◼ 数据处理伦理活动:【回顾实践。识别风险。建立策略。差距。沟通培训。监控校正。】P29
1)回顾数据处理实践;
2)识别准则、方法和风险因素;
3)建立数据处理伦理策略;
4)找到现实差距;
5)沟通和培训员工;
6)监控和校正。
◼ 数据伦理准则:
1)尊重他人;
2)行善原则(不伤害;利益最大伤害最小);
3)公正。
4)尊重法律和公众利益。(4从美国国土安全机构 Menlo报告来。)P30-31
◼ 经合组织的公平信息处理标准:
1)数据采集的限制;
2)对数据高质量的期房
3)为特定目的进行采集数;
4)对数据使用的限制;
5)安全保障;
6)对开放性和透明度的期望;
7)个人挑战与自己有关数据的准确性;
8)组织遵守准则的责任。
◼ 欧盟GDPR准则(2016):
1)公平/合法/透明;
2)目的限制;
3)数据最小化;
4)准确性(准确/最新,能删除或更正);
5)存储限制(可识别主体的形式存,时间不超过应需);
6)诚信和保密(安全处理,防止非法使用或丢失);
7)问责制度(操作人应负责并证明符合上述原则)。P32
◼ 加拿大PIPEDA法定义务:
1)问责制度;
2)目的明确;
3)授权;
4)收集/使用/披露和留存限制;
5)准确性;
6)保障措施;
7)透明度;
8)个人访问;
9)合规挑战。P33
◼ 美FTC的隐私方案标准:发布/告知;选择/许可;访问/参与;诚信/安全;执行/纠正。P33
◼ 公平信息实践其他重点:
1)简化消费者选择,减轻消费者负担。
2)在信息生命周期中建议始终保持全面的数据管理程序。
3)为消费者提供不要跟踪选项。
4)要求明确肯定的同意。
5)关注大型平台提供商的数据采集能力、透明度以及明确的隐私声明和制度。
6)个人对数据的访问。
7)提高消费者对个人隐私保护意识。
8)设计时考虑保护隐私。P33
◼ 在线数据的伦理环境:
1)数据所有权;
2)被遗忘的权力;
3)身份;(拥有身份或选择匿名的权力。)
4)在线言论自由。P34
◼ 违背伦理的数据实践活动:
1)时机选择;
2)可视化误导;
3)定义不清晰或无效的比较;
4)偏见;
5)转换和集成数据;
6)数据的混淆和修订;P35-36
◼ 偏差的类型:
1) 预设结论的数据采集;
2) 预感和搜索;
3) 片面抽样方法;
4) 背景和文化。P36
◼ 数据集成风险:
1)对数据来源和血缘了解有限;
2)质量差的数据;
3)不可靠的元数据;
4)没有数据修订历史的文档;P36
◼ 数据混淆和修订:1)数据聚合;2)数据标记;3)数据脱敏。P37
◼ 建立数据处理伦理文化:
1)评审现有数据处理方法;
2)识别原则、实践和风险因素;(指导性原则、风险、实践、控制)
3)制定合乎伦理的数据处理策略和路线图;
4)采用对社会负责的伦理风险模型。P37-40
◼ 数据处理策略包括:
1)价值观声明。
2)符合伦理的数据处理原则。
3)合规框架。
4)风险评估。
5)培训和交流。
6)路线图。
7)审计和监测方法。P38◼
DAMA-CDGA 第2章 数据处理伦理( 2分)
于 2024-09-22 09:42:51 首次发布