MATLAB实现BFGS算法,用wolfe选择步长

BFGS 算法简介

BFGS(Broyden-Fletcher-Goldfarb-Shanno)算法是一种用于无约束优化问题的准牛顿法。它通过构建和更新近似的海森矩阵(Hessian Matrix)来加速优化过程。BFGS 是一种常用且有效的优化算法,尤其适用于大规模问题。

步长选择:Wolfe 条件

为了选择合适的步长,我们可以使用 Wolfe 条件。这些条件包括:

Armijo 条件(或称为充分下降条件):确保步长不会过大,从而使得目标函数值显著减少。
曲率条件:确保步长不会过小,使得导数的减少足够大。

软约束处理方法

在处理有约束的优化问题时,可以使用软约束方法,例如罚函数法。通过在目标函数中添加一个惩罚项来处理约束条件。

MATLAB 代码示例

以下是一个可以在 MATLAB 中直接运行的代码示例,展示如何使用 BFGS 算法解决实际问题,包括 Wolfe 条件的步长选择和软约束处理。

function bfgs_optimization_example()
    % 初始值
    x0 = [1.2; 1.2];
    
    % 目标函数
    objective = @(x) (1 - x(1))^2 + 100 * (x(2) - x(1)^2)^2;
    
    % 约束函数
    constraints = @(x) x(1) + x(2) - 1.5;
    
    % 罚函数系数
    penalty_coeff = 1000;
    
    % 优化
    [x_opt, f_opt] = bfgs(objective, constraints, x0, penalty_coeff);
    
    % 结果显示
    disp('Optimal solution:');
    disp(x_opt)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值