BFGS 算法简介
BFGS(Broyden-Fletcher-Goldfarb-Shanno)算法是一种用于无约束优化问题的准牛顿法。它通过构建和更新近似的海森矩阵(Hessian Matrix)来加速优化过程。BFGS 是一种常用且有效的优化算法,尤其适用于大规模问题。
步长选择:Wolfe 条件
为了选择合适的步长,我们可以使用 Wolfe 条件。这些条件包括:
Armijo 条件(或称为充分下降条件):确保步长不会过大,从而使得目标函数值显著减少。
曲率条件:确保步长不会过小,使得导数的减少足够大。
软约束处理方法
在处理有约束的优化问题时,可以使用软约束方法,例如罚函数法。通过在目标函数中添加一个惩罚项来处理约束条件。
MATLAB 代码示例
以下是一个可以在 MATLAB 中直接运行的代码示例,展示如何使用 BFGS 算法解决实际问题,包括 Wolfe 条件的步长选择和软约束处理。
function bfgs_optimization_example()
% 初始值
x0 = [1.2; 1.2];
% 目标函数
objective = @(x) (1 - x(1))^2 + 100 * (x(2) - x(1)^2)^2;
% 约束函数
constraints = @(x) x(1) + x(2) - 1.5;
% 罚函数系数
penalty_coeff = 1000;
% 优化
[x_opt, f_opt] = bfgs(objective, constraints, x0, penalty_coeff);
% 结果显示
disp('Optimal solution:');
disp(x_opt)