💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖

本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】

TensorFlow 深度学习 | 使用底层 API 实现模型训练(附可视化)
在 TensorFlow 中,除了使用 Sequential 或 Functional API 来快速搭建模型外,我们还可以直接使用 底层 API 来实现完整的模型训练流程。这种方式非常适合:
- 学习深度学习的底层机制
- 掌握梯度下降、损失计算、参数更新的原理
- 在需要自定义优化器、训练逻辑时灵活使用
本文将带你通过 TensorFlow 底层 API 实现一个二分类模型,并在此基础上加入:
✅ 决策边界可视化
✅ TensorBoard 训练过程可视化
📌 一、数据准备
我们先构造一组简单的二维数据集,并给每个样本生成二分类标签。
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# 设置随机种子保证结果可复现
tf.random.set_seed(42)
# 生成数据:1000 个样本,每个样本 2 个特征
X = tf.random.normal(shape=(1000, 2))
# 构造标签:线性分隔
y = tf.cast(X[:, 0] + X[:, 1] > 0, tf.float32)
可视化数据分布:
plt.scatter(X[:, 0], X[:, 1], c=y, cmap="bwr", alpha=0.7)
plt.title("数据分布")
plt

最低0.47元/天 解锁文章
4769

被折叠的 条评论
为什么被折叠?



