AI产品经理 | 入行AI的必备知识,零基础入门到精通,收藏这一篇就够了

893 篇文章 36 订阅
94 篇文章 1 订阅

随着大模型技术的快速发展,市面上涌现出了大量的大模型产品岗位,那么想要进入AI行业的产品经理同学,需要提前做好哪些准备工作呢?这篇文章里,作者总结了入行AI的必备知识,包括市场调研、产品底层逻辑等内容,一起来看。

AI大模型从去年11月开始到现如今,已经非常火热,无论大厂还是创业新星都在为AI的落地搭建产品架构,并迅速跟进落地铺量,随着业务扩建,市面上也涌现出大量的大模型产品岗位。对于目前在看机会的如果想要入AI坑的话,产品经理要开始做哪些方面的准备工作呢?

一、市场摸底调研:市面主要提供AI服务都有哪些大类?

选择AI大模型的岗位本身也是在做职业的规划过程,对线上已有的公司提供的能力进行摸底调研有助于找准自己的兴趣点,并基于后续规划选择最为契合的岗位方向。按照产品服务的类型,市面上AI提供的品类主要有

对话生成式:基于深度学习模型,如循环神经网络(RNN)或变种,如长短时记忆网络(LSTM)和注意力机制。这些模型通过学习大量的对话数据,可以捕捉到语言的上下文和语义信息,并生成符合语法和语义规则的自然语言回复。这类产品在市面上比较多也相对成熟,比如大家熟知的openai、文心一言、glow等。

AI绘图:利用人工智能技术进行绘图和创作的过程。通过训练深度学习模型,计算机可以学习并模仿艺术家的绘画风格、创作技巧和审美特点,从而生成具有艺术性的图像和绘画作品。在应用这套技术的,比如抖音产品的特效、百度文心一言绘图功能。

虚拟助手和智能客服:利用自然语言处理和对话生成技术,可以与用户进行语音或文本交互,提供信息查询、任务执行、问题解答等服务。这类产品通常服务于2B比较多,日常在美团app里面的小美智能满足用户非结构化的找店需求。

陪伴类的产品市面上会有一些根据人脸做面向分析,也有一些心理咨询行业在用的咨询感情陪伴类产品,底层都是基于用户在数据中的表现去匹配相应的情感支持。

二、这么多品类AI产品,它们底层逻辑是如何实现的?

市面上已有的大模型产品主要依赖底层的基础模型处理数据能力。从最底层到实际应用层,数据方向从基础数据的“非”智能转向有意图的“智能”。

1. 基层模型能力

按产品所需能力建设所需的自研数据,这里面可能包括特定的图像表达、语音表达、视频表达、情绪感知等多种类型的数据服务能力。

其次是基于战略合作的特色数据源,本图中给出的数据合作产品ChatGLM-6B是开源的双语对话模型,含 62 亿参数,可处理对话聊天、智能问答等多种自然语言任务,支持在单张消费级显卡上推理使用,提供服务方是面向企业的2B类公司。

开放接口,众所周知,来自OpenAI跟微软Azure提供的智能化语义理解与智能办公的数据处理能力。

开源模型主要分为NLP工具包、元学习开源库等资源信息,按照产品本身的的需求能力可以自己接入。

再往上走就是基于目标服务的能力如何保证数据的高效调用,一般会从部署能力、推理优化、量化压缩几个象限去建构调用的资源,实现减少存储数据的压力,提升查询速度,缩短问题被解答的思考时间,建构自适应学习能力提高问题解答满意度等目标。

最外层的输出,就是基于上述数据的安全合规,一般分为两个视角,数据使用的安全监控能力、内容存储的合规合法能力。关于数据隐私方面的内容未来会基于特定场景再做详述。

2. 应用框架层

顾名思义,为了满足应用层的调取高效实现转换、理解、查询、调用、输出的架构层。

通过上述架构图也可以看出,工具管理主要满足服务模型、Prompt、存储、知识图谱等模块的存放跟使用;

配置组合用于处理多个模型或组件组合在一起来实现更高级的功能。这种组合可以是串行的,即一个模型的输出作为下一个模型的输入;也可以是并行的,即多个模型同时处理不同的输入数据。通过组合不同的模型或组件,可以实现更复杂的功能,例如语音识别和语义理解的组合、图像分类和目标检测的组合等。组合可以根据具体的需求和场景进行灵活的设计和调整,以实现更好的性能和效果。

编排决策用来满足完成复杂任务的执行。例如,一个语音识别应用可能需要包括语音前端处理、语音识别模型、语义理解模型等多个组件。在这种情况下,编排就是将这些组件按照一定的顺序和逻辑连接起来,以实现整体的功能。除了内容体裁的读取,编排还涉及到模型的调用顺序、输入输出的传递、数据的处理和转换等。它需要考虑到各个组件之间的依赖关系、数据流的管理、错误处理等方面的问题。

编排技术在AI基层模型能力中起着重要的作用,它可以帮助开发者更好地组织和管理复杂的模型和组件,实现更高效、更灵活的AI应用。同时,编排也可以提供更好的可扩展性和可维护性,使得AI模型能力在不同场景和需求下更加灵活和适应。

以上的干货信息,对于想要入行的PM来说面试基本上已经足够。

3. 产品应用层

这里主要就是市面上大家所关注到的各类产品,具体产品在此不详细赘述。单独拎出来是希望大家可以结合自己日常熟悉工作的视角来判断各类产品视角下,我们的优势跟可以切入的领域。

比如,目前在做客服平台,如何才能结合大模型提升整体的客服满意度?如果在做销售管理,如何利用好大模型更好的经营本地销售业务,这些问题想明白有助于投递大模型相关岗位中有的放矢,把完整的链路思考全面。

三、如何赢得市场增长跟变现思路

回应这个问题本质是对变现模式的回应,在这里抛砖引玉举两个例子。

1. 自媒体从业人员

建议从使用好AI产品,抓住AI生成产品能力的优势来落地,学习使用AI生成“显眼包”的话题,借用AI美化宣传文案,甚至可以使用AI润色图文,使用AI能力管理好社群消息分析运营思路。

借用AI能力打磨账号自身的流量,获得一定影响力,持续创造营收。

2. 小企业如果已经有了相对成熟的体量且用户相似度较高,且不希望只做广告

  1. 付费订阅类产品:围绕目标群体,提供需要的资讯、动态、八卦等信息,整合输出高质量的内容社区,提供付费价值,收取订阅费用。对当前社会形势严峻的就业择业等问题提供信息资讯服务,向用户收取费用。

  2. 数据销售和用户调研:借助大模型能力通过收集、分析和销售用户数据,为企业提供市场调研和用户洞察。

  3. 借助AI能力,挖掘线上用户特征,输出用户本身所需的自我认知、潜能输出等的产品,实现平台变现通道。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?

  • 大模型是怎样获得「智能」的?

  • 用好 AI 的核心心法

  • 大模型应用业务架构

  • 大模型应用技术架构

  • 代码示例:向 GPT-3.5 灌入新知识

  • 提示工程的意义和核心思想

  • Prompt 典型构成

  • 指令调优方法论

  • 思维链和思维树

  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG

  • 搭建一个简单的 ChatPDF

  • 检索的基础概念

  • 什么是向量表示(Embeddings)

  • 向量数据库与向量检索

  • 基于向量检索的 RAG

  • 搭建 RAG 系统的扩展知识

  • 混合检索与 RAG-Fusion 简介

  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG

  • 什么是模型

  • 什么是模型训练

  • 求解器 & 损失函数简介

  • 小实验2:手写一个简单的神经网络并训练它

  • 什么是训练/预训练/微调/轻量化微调

  • Transformer结构简介

  • 轻量化微调

  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型

  • 带你了解全球大模型

  • 使用国产大模型服务

  • 搭建 OpenAI 代理

  • 热身:基于阿里云 PAI 部署 Stable Diffusion

  • 在本地计算机运行大模型

  • 大模型的私有化部署

  • 基于 vLLM 部署大模型

  • 案例:如何优雅地在阿里云私有部署开源大模型

  • 部署一套开源 LLM 项目

  • 内容安全

  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值