使用yolov4训练自己都数据


yolov4开源代码 https://github.com/AlexeyAB/darknet

本教程系统为ubuntu16.04

一、下载编译yolov4

git clone https://github.com/AlexeyAB/darknet.git
cd darknet
make -j12

编译完成后会在darknet目录下生成libdarknet.so库文件,这个文件在是比较重要的。

二、测试

./darknet detect cfg/yolov4.cfg yolov4.weights data/dog.jpg

二、训练自己都数据集

2.1数据集准备

按照VOC数据集创建目录,目录分级如下:
在这里插入图片描述
在main内创建四个txt文件,如下:
在这里插入图片描述

2.1.1将自己都数据集放入JPEGImages中
2.1.2对JPEGImages文件夹中的图片进行重命名
import os
path="/media/jjy/jjy/VOCdevkit/VOC2007/JPEGImages/" #根据自己的文件地址改,将JPEGImages文件夹地址写到这里,最后不要忘了加/
filelist = os.listdir(path)
count=0
for file in filelist:
    print(file)
for file in filelist:
    Olddir=os.path.join(path,file)
    if os.path.isdir(Olddir):
        continue
    filename=os.path.splitext(file)[0]
    filetype=os.path.splitext(file)[1]
    Newdir=os.path.join(path,str(count).zfill(6)+filetype)
    os.rename(Olddir,Newdir)
    count+=1

创建python脚本,将脚本文件放入VOC2007文件夹,然后在终端运行:

python rename.py
2.1.3使用lableimg软件对图片进行标注
#安装lableimg
#进入python3 conda环境
sudo apt-get install pyqt5-dev-tools
pip install lxml
git clone https://github.com/tzutalin/labelImg.git
cd labelImg
make all
python3 labelImg.py  #打开labelImg
#遇到问题自己google解决一下

标注都保存文件夹设置为上边新建都Annotations。

2.1.4生成用于训练和测试的检索文件

在VOC2007文件夹下新建txt.py文件,将下面的代码复制进文件中

import os
import random
 
trainval_percent = 0.66
train_percent = 0.5
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets/Main'
total_xml = os.listdir(xmlfilepath)
 
num=len(total_xml)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train=random.sample(trainval,tr)
 
ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w')
 
for i  in list:
    name=total_xml[i][:-4]+'\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)
 
ftrainval.close()
ftrain.close()
fval.close()
ftest .close()

运行txt.py,Main文件夹下都txt文件。
最后制作完效果如下:
在这里插入图片描述

2.2制作yolov4需要的label以及txt

需要制作满足yolov4格式都lable和txt。
首先打开路径下 build/darknet/x64/data/voc/voc_label.py,修改voc_label.py里面的内容。
先把7行的关于2012的去掉,再把第9行改成自己的类别。
我的改完如下

sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = ["vehicle", "sign"]

给每个路径前面加个data,如下:
在这里插入图片描述
可能会存在 w为0或h为0的存在:
在这里插入图片描述
修改完了之后复制voc_label.py在主目录darknet下执行,否则那些文件会生成在build/darknet/x64/data下面,执行完成后你会看到主目录下的data/目录下会生成几个txt。主目录darknet下的data/VOCdevkit/VOC2007/下面会生成一个label文件夹,里面txt会有坐标偏移量。

2.3修改配置文件

2.3.1

cfg/目录下复制coco.data,并且重命名为obj.data,放在cfg/目录下。然后使用修改下面以下内容
在这里插入图片描述

2.3.2

cfg/目录下复制coco.names,并且重命名为obj.names,放在cfg/目录下。改成自己类别的名称
在这里插入图片描述

2.3.3

复制cfg/yolov4-custom.cfg,并且重命名为yolo-obj.cfg,放在cfg/目录下,同时修改一下内容
在这里插入图片描述
上图中修改width和height为416,修改最大batch迭代多少个数max_batches = 6000,修改steps多久学习率下降一次,一般设置为batch个数的80%和90%。

然后三个classes的地方要修改
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.4训练自己的数据集

./darknet detector train cfg/obj.data cfg/yolo-obj.cfg yolov4.conv.137

2.5预测

./darknet detector test cfg/obj.data cfg/yolo-obj.cfg yolo-obj_xxxx.weights 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姜聿于

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值