使用yolov4训练自己都数据
yolov4开源代码 https://github.com/AlexeyAB/darknet。
本教程系统为ubuntu16.04
一、下载编译yolov4
git clone https://github.com/AlexeyAB/darknet.git
cd darknet
make -j12
编译完成后会在darknet目录下生成libdarknet.so库文件,这个文件在是比较重要的。
二、测试
./darknet detect cfg/yolov4.cfg yolov4.weights data/dog.jpg
二、训练自己都数据集
2.1数据集准备
按照VOC数据集创建目录,目录分级如下:
在main内创建四个txt文件,如下:
2.1.1将自己都数据集放入JPEGImages中
2.1.2对JPEGImages文件夹中的图片进行重命名
import os
path="/media/jjy/jjy/VOCdevkit/VOC2007/JPEGImages/" #根据自己的文件地址改,将JPEGImages文件夹地址写到这里,最后不要忘了加/
filelist = os.listdir(path)
count=0
for file in filelist:
print(file)
for file in filelist:
Olddir=os.path.join(path,file)
if os.path.isdir(Olddir):
continue
filename=os.path.splitext(file)[0]
filetype=os.path.splitext(file)[1]
Newdir=os.path.join(path,str(count).zfill(6)+filetype)
os.rename(Olddir,Newdir)
count+=1
创建python脚本,将脚本文件放入VOC2007文件夹,然后在终端运行:
python rename.py
2.1.3使用lableimg软件对图片进行标注
#安装lableimg
#进入python3 conda环境
sudo apt-get install pyqt5-dev-tools
pip install lxml
git clone https://github.com/tzutalin/labelImg.git
cd labelImg
make all
python3 labelImg.py #打开labelImg
#遇到问题自己google解决一下
标注都保存文件夹设置为上边新建都Annotations。
2.1.4生成用于训练和测试的检索文件
在VOC2007文件夹下新建txt.py文件,将下面的代码复制进文件中
import os
import random
trainval_percent = 0.66
train_percent = 0.5
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets/Main'
total_xml = os.listdir(xmlfilepath)
num=len(total_xml)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train=random.sample(trainval,tr)
ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w')
for i in list:
name=total_xml[i][:-4]+'\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest .close()
运行txt.py,Main文件夹下都txt文件。
最后制作完效果如下:
2.2制作yolov4需要的label以及txt
需要制作满足yolov4格式都lable和txt。
首先打开路径下 build/darknet/x64/data/voc/voc_label.py,修改voc_label.py里面的内容。
先把7行的关于2012的去掉,再把第9行改成自己的类别。
我的改完如下
sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = ["vehicle", "sign"]
给每个路径前面加个data,如下:
可能会存在 w为0或h为0的存在:
修改完了之后复制voc_label.py在主目录darknet下执行,否则那些文件会生成在build/darknet/x64/data下面,执行完成后你会看到主目录下的data/目录下会生成几个txt。主目录darknet下的data/VOCdevkit/VOC2007/下面会生成一个label文件夹,里面txt会有坐标偏移量。
2.3修改配置文件
2.3.1
cfg/目录下复制coco.data,并且重命名为obj.data,放在cfg/目录下。然后使用修改下面以下内容
2.3.2
cfg/目录下复制coco.names,并且重命名为obj.names,放在cfg/目录下。改成自己类别的名称
2.3.3
复制cfg/yolov4-custom.cfg,并且重命名为yolo-obj.cfg,放在cfg/目录下,同时修改一下内容
上图中修改width和height为416,修改最大batch迭代多少个数max_batches = 6000,修改steps多久学习率下降一次,一般设置为batch个数的80%和90%。
然后三个classes的地方要修改
2.4训练自己的数据集
./darknet detector train cfg/obj.data cfg/yolo-obj.cfg yolov4.conv.137
2.5预测
./darknet detector test cfg/obj.data cfg/yolo-obj.cfg yolo-obj_xxxx.weights