最近发现了两篇效果很妙的GCN结合Transformer的最新工作,分享给大家:
-
MP-GT:通过结合GCN和Transformer方法来增强App使用预测的准确性,实现了74.02%的性能提升,且训练时间减少了79.47%。
-
MotionAGFormer:结合GCNFormer和Transformer以捕捉复杂的局部关节关系,提高3D姿势估计的准确性。实验表明其参数减少了3/4,计算效率涨了3倍。
从技术细节来看(见下文),这种结合充分利用了GCN对图结构数据的处理能力以及Transformer在处理序列数据方面的优势,能非常有效地提升模型在多种任务上的表现。
因此这个策略在很多实际应用场景中非常好用,很多GCN结合Transformer的出色成果都能证明。我这次就从中挑选9篇最新的研究供大家学习,帮助各位快速了解这个GNN领域的重要研究方向。
论文原文+开源代码需要的同学看文末
Enhancing App Usage Prediction Accuracy With GCN-Transformer Model and Meta-Path Context
方法:论文提出了一种名为MP-GT的新型模型,通过在GCN-Transformer框架中引入元路径引导优化,提高了应用使用预测的准确性。该方法通过采用GCN和Transformer方法提取局部子图结构和全局图结构,解决了悬停问题和过度平滑问题。此外,作者通过引入元路径引导的目标函数,增强了语义信息和应用使用模式的提取能力。
实验证明,MP-GT在准确率方面比语义感知