GCN结合Transformer炸场!性能暴涨74%,效率翻3倍

最近发现了两篇效果很妙的GCN结合Transformer的最新工作,分享给大家:

  • MP-GT:通过结合GCN和Transformer方法来增强App使用预测的准确性,实现了74.02%的性能提升,且训练时间减少了79.47%。

  • MotionAGFormer:结合GCNFormer和Transformer以捕捉复杂的局部关节关系,提高3D姿势估计的准确性。实验表明其参数减少了3/4,计算效率涨了3倍。

从技术细节来看(见下文),这种结合充分利用了GCN对图结构数据的处理能力以及Transformer在处理序列数据方面的优势,能非常有效地提升模型在多种任务上的表现。

因此这个策略在很多实际应用场景中非常好用,很多GCN结合Transformer的出色成果都能证明。我这次就从中挑选9篇最新的研究供大家学习,帮助各位快速了解这个GNN领域的重要研究方向。

论文原文+开源代码需要的同学看文末

Enhancing App Usage Prediction Accuracy With GCN-Transformer Model and Meta-Path Context

方法:论文提出了一种名为MP-GT的新型模型,通过在GCN-Transformer框架中引入元路径引导优化,提高了应用使用预测的准确性。该方法通过采用GCN和Transformer方法提取局部子图结构和全局图结构,解决了悬停问题和过度平滑问题。此外,作者通过引入元路径引导的目标函数,增强了语义信息和应用使用模式的提取能力。

实验证明,MP-GT在准确率方面比语义感知的图卷积网络(SA-GCN)基线模型提高了13.33%。此外,MP-GT在相同指标上比基线模型CAP提高了74.02%。此外,与SA-GCN相比,MP-GT的训练时间缩短了79.47%。

创新点:

  • MP-GT将GCN和Transformer两种架构相结合,通过在GCN层后面引入Transformer子网络,捕捉节点的长距离依赖关系,解决了GCN中的过度平滑和过度压缩问题,使得模型更具表达力和综合性。

  • MP-GT通过引入meta-path引导的优化函数,实现对观察到的共现关系的捕捉,从而获得更丰富和有意义的上下文关系,提高了预测性能。此外,该方法还具有快速收敛的特点,减少了训练时间。

MotionAGFormer: Enhancing 3D Human Pose Estimation With a Transformer-GCNFormer Network

方法:论文介绍了一种新颖的用于3D人体姿势估计的模型MotionAGFormer。该模型结合了Transformer和图卷积网络(GCNs)的优势,通过自适应融合从Transformer和图卷积网络中提取的特征,实现了对人体运动的全面和平衡的表示,从而提高了3D姿势估计的准确性。

实验证明,MotionAGForme在Human3.6M数据集和MPI-INF-3DHP数据集上使用的参数是之前领先模型的四分之一,计算效率是其三倍。

创新点:

  • 引入了Attention-GCNFormer (AGFormer)模块,通过使用两个并行的Transformer和GCNFormer流,将通道数量分割。GCNFormer模块利用相邻关节之间的局部关系,输出与Transformer输出互补的新表示。

  • 通过堆叠多个AGFormer模块,提出了四个不同的MotionAGFormer变体,可以根据速度和准确性的权衡进行选择。

YZS-MODEL: A PREDICTIVE MODEL FOR ORGANIC DRUG SOLUBILITY BASED ON GRAPH CONVOLUTIONAL NETWORKS AND TRANSFORMER-ATTENTION

方法:论文使用Cui等人收集的数据集,包括6,754个有机化合物,通过引入深度学习框架,结合基于注意力机制的Transformer、长短时记忆网络(LSTM)和图卷积网络(GCN),旨在提高溶解度预测的准确性,为药物设计和选择提供新的见解,并通过多个测试集的性能验证,证明了该模型在溶解度预测方面的优越性,为药物的发现和开发提供了新的方法。

创新点:

  • 作者采用深度学习模型来准确预测药物分子的溶解度。

  • 作者提出了一种新的深度学习框架,结合了基于注意力的Transformer、长短期记忆网络(LSTM)和图卷积网络(GCN),旨在提高溶解度预测的准确性。

GCNFORMER: graph convolutional network and transformer for predicting lncRNA-disease associations

方法:本文提出了一种基于图卷积网络和Transformer的新型LDA预测模型GCNFORMER,通过构建基于lncRNA、miRNA和疾病之间的内类相似性和外类相关性的图关系邻接矩阵,利用GCN提取三个实体之间的特征,最后采用Transformer的编码器部分进行lncRNA和疾病之间的关联预测,该模型在AUC和AUPR方面优于当前其他方法,为LDA预测领域带来了新的思路与技术手段。

创新点:

  • GCNFORMER模型采用图卷积网络进行特征提取,然后采用Transformer的编码器来预测潜在的lncRNA-disease关联。在五折交叉验证中,GCNFORMER的AUC和AUPR优于其他六个LDA预测模型。

  • 通过交叉验证和参数调整,GCNFORMER模型具有较好的泛化能力和抗过拟合能力。

  • 本文的研究为LDA预测领域带来了新的思路和技术手段,提高了LDA预测模型的准确性和解释能力,促进了相关研究的深入发展。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“GCN结合”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

  • 5
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
TransformerGCN(Graph Convolutional Network)是两种不同的神经网络模型,它们可以相结合用于处理图数据。 Transformer是一种基于自注意力机制的神经网络模型,最初用于自然语言处理任务,如机器译和语言模型。它通过多层的自注意力和前馈神经网络层来捕捉输入序列中的上下文信息。Transformer的核心思想是通过自注意力机制来计算输入序列中每个位置的权重,从而实现对不同位置的关注程度。 GCN是一种用于图数据的卷积神经网络模型,它通过在图结构上进行局部连接和聚合操作来学习节点的表示。GCN利用节点之间的连接关系来传播和聚合信息,从而实现对节点的特征提取和图结构的分析。 将TransformerGCN结合可以用于处理图数据的任务,如节点分类、图分类和图生成等。一种常见的方法是将GCN作为Transformer的编码器部分,用于学习节点的表示,然后将Transformer的解码器部分用于执行具体的任务。 具体而言,可以使用GCN来构建图的邻接矩阵,并将其作为输入传递给Transformer模型。在编码器部分,GCN可以通过多层的图卷积操作来学习节点的表示。然后,将学习到的节点表示作为输入传递给Transformer的自注意力机制,以捕捉节点之间的关系和上下文信息。最后,可以根据具体任务的需求,在解码器部分使用Transformer的输出进行进一步的处理和预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值