一、说明
这篇文章主要通过"扣子"平台构建了一个智能体应用程序,帮助大家在平时的工作生活当中调用自己的智能体知识库,通过积累整理平时的知识,大大提高工作效率。
二、什么是扣子?
"扣子"是由字节跳动公司于2024年2月1日推出的一款集成AI智能体开发平台。它开创了国内AI聊天机器人快速开发的先河。
▲扣子首页
下面是扣子平台创建Bot的页面,对于初次使用的伙伴来说功能确实很多,但不知道从何下手搭建智能体。
▲扣子智能体搭建页面
上文提到的 Agent (智能体)是由4个关键部分构成,他们是:规划(Planning)、记忆(Memory)、工具(Tools)、行动(Action)
▲由LLM驱动的智能体系统
我们可以从这四个核心要素出发,对"扣子"的智能体创建界面进行详细解析,如下所示:
▲对智能体搭建页面进行标注
通过细致的标注,读者可以清晰地看到,构建一个智能体实际上是在配置四个核心要素。具体来说:
-
人设与回复逻辑:这涉及到Prompt的设置,它对应于智能体的规划阶段(Planning)。
-
插件、工作流、图像流等技能:这些技能的配置,以及对文本、表格等知识的整合,属于工具(Tools)的范畴。
-
变量、数据库、长期记忆:这些配置构成了智能体的记忆(Memory)部分。
-
预览与调试:最后,预览与调试环节则对应于智能体的执行(Action)阶段。
接下来,我将通过一个实际案例,展示如何利用"扣子"平台来搭建智能体。
三、知识库助理
在日常的工作中,经常会产生大量的知识信息,如:会议纪要、产品思考、读书笔记等,目前作者统一通过笔记工具进行管理。
▲笔记工具储存的知识库
然而,随着知识量的不断增长,仅仅依靠传统的分类和标签系统,我们发现要迅速定位到所需的信息或知识点变得越来越困难。在某些情况下,我们不得不逐个打开笔记文件来搜索内容,这无疑大大耗费了我们宝贵的时间。
那么,是否有可能建立一个个性化的知识库助手,通过简单的提问,就能得到精确且针对性的答案呢?这样的助手将使我们的知识检索过程变得更加高效和顺畅。
我们可以通过COZE来试试:
1、创建Bot
首先,在扣子的首页,点击“创建Bot”,Bot 就是Agent智能体(下文统称为“智能体”)。简单描述Bot的名称和相关的功能介绍,我们称为“知识库助手”。
▲创建Bot
2、配置智能体人设
然后,我们就可以定义好智能体的人设(即Prompt),在写Prompt的过程中,简单描述角色、要求,再利用扣子(coze)的AI优化功能进行相关的完善。
▲通过扣子AI功能优化智能体人设
3、创建知识库
扣子支持通过文本、表格、图片等文件类型创建知识库,我们选择文本格式(路径为:点击“个人空间”—“知识库”—“创建知识库”)。
▲选择导入知识文件类型与方式
"扣子"平台针对文本数据格式,提供了丰富的导入途径,涵盖了本地文档、网络数据源、Notion和飞书等多种选择。以我个人的实践为例,我习惯使用笔记软件将资料导出成DOC文件,然后导入到"扣子"平台,以此构建起我自己的专属知识库。
▲导入本地知识文件
文件导入成功后,再对知识进行切片和分段,支持“自动分段清洗”与“自定义”两种方式,通过分段处理后有助于提高检索的精准度。
▲对本地知识分段
现在,知识库创建完成了。
4、搭建工作流
智能体在回答问题时,主要依赖于本地知识库进行分析和推理,这样就无需接入外部的插件工具。然而,如果智能体仅依赖单一的本地知识库,可能会提供一些与问题不相关的答案。为了提高回答的准确性,我们需要设计并构建一个工作流系统。(路径为:点击“个人空间”—“工作流”—“创建工作流”)。
▲创建工作流
工作流可以理解为:通过选择不同的节点把任务拆解为多个步骤,让智能体按照预设工作流程对任务进行分步处理,从而提升对复杂任务的处理效率。
我们可以在左侧选择节点后点击“+”,把节点添加到右侧工作流编辑区,如下图所示:
▲工作流编辑区域
1)开始节点
“开始”节点会接受我们输入的问题,这里把输入变量名称设置为“question”。
▲开始节点
2)知识库节点
“知识库” 节点会从本地知识库中检索出与问题相关的知识片段,我们把刚才创建好的知识库添加到该节点中。
▲知识库节点
3)大模型节点
在“知识库”节点获取到知识片段后,结合原问题组装成提示词再送到“大模型”节点进行处理。此节点支持选择不同的大模型,如:豆包、通义千问、kimi、智谱等。
▲大模型选择
在“提示词”这一部分,定义好角色、任务与要求,可以让大模型更高效地处理任务。
▲大模型节点
4)结束节点
在大模型处理后,通过“结束”节点展示答复,完成任务。
▲结束节点
编辑好工作流后,点击右上方按钮对工作流进行【试运行】。
▲对工作流进行试运行
然后,输入相关问题后,验证工作流是否可以成功运行,成功后点击【发布】,即可完成工作流搭建。
▲运行成功
5、测试和发布
下面,我们在智能体搭设中,添加上面的工作流。
▲添加工作流
然后,在右侧的预览区域与调试区域中,对智能体进行调试。
▲测试智能体
为了提高与智能体的对话体验,我们还可以配置如:开场白、快捷指令、角色语音等个性化功能,让智能体更“拟人化”。
▲智能体的个性化设置
最后,点击在右上方的【发布】,选相应的发布平台即可,扣子支持了豆包、飞书、抖音、微信公众号等等多个平台。
▲智能体发布
现在,一个自己的**【知识库助手】**就搭建完成。
四、结语
“知识库助手”只是智能体搭建中,最小的闭环应用,按照相同的思路,我们可以构建出更加复杂且强大的智能体,后面有机会再跟大家分享。
六、如何系统学习AI大模型?(附全套学习资源)
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
5.免费获取
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】