📸 *Ermira “Mira” Murati,工程师、研究者与科技企业家。*曾任 OpenAI 首席技术官(2022年5月–2024年9月),并于 2025 年 2 月创办 AI 初创公司 Thinking Machines Lab。图源网络。
引言:
📌 本文是我从系统工程视角对 AGI 初创潮的观察和记录。
我自己做AI落地这块已经5年了,从芯片、电路到推理引擎都亲手干过一遍。现在专注做一体化AI系统的实战工作。如果你也在搞项目、搞部署,可以在评论区或者私信共同探讨、交流。
从 OpenAI 到 DeepSeek,现在谁都自称是 AGI 初创公司,但到了 2025,这类公司已经爆炸式增长到让人头大。
2023 年 4 月 14 日,幻方量化宣布成立一个专注于人工通用智能(AGI)研究的实验室,与幻方的金融业务完全分离。2023 年 7 月 17 日,这个实验室正式注册为独立公司,由幻方出资和支持,名字叫 DeepSeek。
这些年,自称“AGI研究实验室”俨然成了流行的市场话术,但真有人相信 AGI 是真的?或者说,今天这些架构,真的有可能搞出来 AGI 吗?
AGI 的定义也好,时间表也好,现在都是众说纷纭。但多数机器学习工程师和研究者基本有共识:现有的大模型架构,很难真的搞出所谓的 AGI。
AI研究者怎么看AGI
最近,美国人工智能促进协会(AAAI)组织的一个关于AI未来的专家小组,调查了 475 位 AI 研究者,结果显示有 76% 的人认为“靠放大现有AI方法”来实现 AGI 是“不太可能”或“非常不可能”的——这基本反映了大家对现在的机器学习方式实现真正智能的普遍怀疑。
“在数据中心造爱因斯坦”的问题
TechCrunch 的 Maxwell Zeff 最近写了一篇相当犀利的分析,文中 Hugging Face 的联合创始人兼首席科学官 Thomas Wolf 评价 Amodei 的一些设想时说:
“这最多算是痴人说梦。”
Wolf 的看法,Yann LeCun 和其他很多人也认同:今天的大语言模型(LLMs)根本不具备实现 AGI 的能力。
“我已经对LLMs没兴趣了。它们不过是‘token生成器’,而token是离散空间的,这就注定了它们的限制。我现在更感兴趣的是下一代模型架构,要能干这四件事:理解物理世界,有持久记忆,具备规划能力,还能推理。” —— Yann LeCun,在 2025 年 Nvidia GTC 上
尽管把模型比成博士、吹 AGI 吹得天花乱坠听起来有点荒唐,但AI初创公司还是一轮轮地拿到大笔融资。硅谷靠炒作起家,Sam Altman 俨然成了“空头支票”的典型代表。这套玩法既瞄准了风投的钱包,也收割了公众的幻想——既制造了一场“硅谷幻觉”,也推动了科技巨头在AI基础设施上砸下数百亿美元。
这场叙事,正在变得异常昂贵。
“如果你真想在数据中心里造出一个爱因斯坦,那你得造出一个不仅知道答案、还能提出别人从未想到或敢问的问题的系统。” —— Thomas Wolf,Hugging Face
AGI 初创公司的崛起
OpenAI 的“衍生公司”看起来更热衷于贴上 AGI 的标签。
Anthropic CEO 最近的发言尤其令人担忧。虽然 OpenAI 本身可能是最大的“假扮者”,但在 2024 和 2025 年,越来越多的公司都在打着“为 AGI 铺路”的旗号。
[2025年1月21日,美国总统特朗普在白宫罗斯福厅听OpenAI CEO Sam Altman发言。图源:Jim Watson | Afp | Getty Images]
• 我们正见证一大批所谓“AGI初创公司”的涌现。
2024年,生成式AI吸引了超过560亿美元的风险投资。2025年会是多少?未来几年,数据中心和AI基础设施的资本支出还会涨多少?
我列的AGI初创公司名单:
微软那篇《Sparks of AGI》的作者最后也去了 OpenAI。微软在2023年4月对OpenAI的大投资标志着这波硅谷“割韭菜文化”的新高潮——到了2025,这股风气甚至传到了中国。
- Anthropic(七位创始人,现在都是亿万富翁)
- xAI,Elon Musk 创办 ⭐
- Safe SuperIntelligence(SSI),Ilya Sutskever 创办 ⭐
- Thinking Machines Lab,Mira Murati 创办 ⭐
- Ndea,François Chollet 创办 ⭐
- DeepSeek,梁文锋
- Reflection AI,Misha Laskin
- Moonshot AI,杨植麟 & 张玉涛
- 智谱AI,唐杰 & 李娟子
猜猜这些公司加起来能融多少钱?数字一定会吓你一跳。到 2025 年 3 月,这些实验室最像是 AGI 初创公司的代表——数量还在不断增加,有些甚至开始进军机器人领域,比如 Generalist AI。
这些公司并不是在造什么“温柔的机器”,它们更可能是巨大的资本、人力和时间黑洞。Anthropic CEO Dario Amodei 最近还声称:AI 将在 3 到 6 个月内写出 90% 的代码,在一年内写出几乎所有代码,可能会彻底颠覆整个软件行业。
这已经不是开玩笑了。Reflection AI 的创始人干脆跳过了 AGI,直接自称是“超级智能公司”——这以前只有 Ilya Sutskever 敢这么搞。Mira Murati 的 Thinking Machines Lab 同样认真,还挖走了一堆 OpenAI 老员工,来就干。Anthropic 的商业成功作为 OpenAI Mafia 的“第一代衍生公司”,也带动了这种风气:什么都能吹。🚀
新一代AGI初创公司的崛起
这批新公司的思路不是去和 OpenAI、微软、Meta、谷歌、Anthropic、xAI 等巨头在资本开支上硬碰硬,而是试图重构AI开发路径,走出一条不一样的路。
三家AGI初创公司聚焦:SSI、Thinking Machines Lab、Ndea
三家创始人都是从美国顶级实验室出来的前研究骨干:Ilya Sutskever(前OpenAI首席科学家)、Mira Murati(前OpenAI首席技术官)、François Chollet(前Google工程师)。
为什么他们愿意放弃高薪职位,自己出来创业?每人理由不同,但背后有个共通点。
2024年11月,Ilya Sutskever 对路透社说:
“2010年代是‘扩展’的时代。现在我们又回到了‘探索’和‘发现’的时代。每个人都在找下一个东西。把对的东西扩展开,比什么都重要。”
Mira Murati 虽然没详细说自己为什么离开 OpenAI,但她表示:
“我想给自己创造时间和空间,去做自己的探索。”
François Chollet 在 Dwarkesh Patel 的播客节目中说了不少有料的观点,说他为什么要搞 Ndea:
“你把数据库变大,往里面塞更多知识、更多模式,确实可以在‘记忆类’指标上提高性能,这不是废话吗。但你这么搞,并不会让系统更聪明。你提高的是‘技能’,而不是‘智能’。这两者不一样。人们总是搞混了‘技能’和‘智能’。”
节目后段,Chollet 还说:
“我觉得 OpenAI 实际上让 AGI 的进展倒退了五到十年。有两个原因:一是它导致前沿研究封闭;二是它把 LLM 吹上了天。现在大家都在搞LLM,而我觉得LLM其实是走错路了。本该去探索更广阔可能性的资源,现在全被砸在LLM上。”
“2015、2016年那会儿,全世界搞AI的才这么一点人,但节奏更快、想法更多,因为大家还在各种方向上瞎搞。那时候,世界还挺开放的。”
他们三人其实都想探索一套全新的AI研发路径。虽然只有 Chollet 公开发声,但他们看穿了一点:当前这些顶级 AI 实验室都陷在一个“放大数据、算力、参数”就能变聪明的怪圈里。这种心态,就是所谓的“Scaling Paradigm”或者“Bigger-is-Better Paradigm”。Sam Altman 最近也在一篇博客里讲这个逻辑:
“一个AI模型的智能,大概等于训练和运行它时用的资源的对数。”
这种逻辑很方便 Altman 这类不写代码的人拿去跟投资人讲:钱越多,AI越聪明。但问题是:OpenAI 这是不是在爬错梯子了?一味放大,而忽略了其他根本性方向的探索?
2024年9月,Inria研究中心的 Gael Varoquaux、Hugging Face 的 Alexandra Sasha Luccioni 和 Signal CEO Meredith Whittaker 三人合写的一篇论文,直接反驳了“越大越好”这套路子:
- “Bigger is Better”模式不可持续,因为“算力的需求增长远快于模型性能”。现实中,很多任务在一定阈值后性能就不涨了。
- 通用AI的放大狂热会让人忽略模型是怎么运作的,进而影响审计与评估。而且在很多特定场景,比如医疗、教育、气候,“规模根本不重要”,小模型完全够用。
- 放大路径加剧了技术权力集中在少数巨头手里,同时也让其他人无法参与AI研究方向的制定和社会应用。
DeepSeek ⭐
大家应该记得,有家中国初创公司前阵子火了,开源了一个推理模型 DeepSeek-R1,训练成本不高但测试效果惊艳。那 DeepSeek 算不算 AGI 初创公司的一员?简单说下:
CEO 梁文锋在访谈里说,公司目标是“搞出AGI”,而不是先想着赚钱——但这话可能说变就变。2025年2月18日,《南华早报》报道说 DeepSeek 把营业执照加上了“互联网信息服务”,这可能意味着要商业化。
为什么不呢?DeepSeek 的商业潜力大得惊人。它的开源AI模型已经嵌入了中国一众手机厂商(华为、OPPO、Vivo、联想、荣耀)的设备里。腾讯和百度也把它整合进自家搜索平台。比亚迪、吉利、长城、奇瑞、上汽等汽车品牌也准备上车。甚至地方政府都在用 DeepSeek 做政务系统的底层AI。
很多人说 DeepSeek 是“小钱干大事”的典范。但芯片研究公司 SemiAnalysis 估计,DeepSeek 光在算力硬件上的花销就超过 5 亿美元——还不包括研发和论文没写出来的前期投入。
所以从综合来看,我更倾向于把 DeepSeek 看作美国那些大AI实验室的竞争对手,而不是这批“新一代AGI初创公司”的一员。
🧠 有人私信问我:要做通用智能方向,是不是得先搞定系统推理能力?
我其实之前做过几份相关的内部笔记,从底层模型设计到部署路径图都有整理,感兴趣的可以在评论区留【AGI笔记】,我可以私信发你看看。
🔧 像 DeepSeek 这种“开源起家 + 快速落地”,其实很考验工程系统能力。我对他们的技术路线也做过结构性分析,想要学习这类“模型选型+系统部署”方法的,可以留言【架构清单】,我发给你。
📸 *Ilya Sutskever,加拿大籍以色列裔计算机科学家,深度学习奠基人之一。*与 Hinton 和 Krizhevsky 共同发明 AlexNet,曾任 OpenAI 联合创始人兼首席科学家。2024 年 6 月,在美国创办 Safe Superintelligence Inc.,聚焦安全驱动的超级智能研究。图源网络。
Safe Superintelligence(SSI)⭐
Ilya Sutskever 是 AI 领域里最出名的大佬之一。他是 OpenAI 的联合创始人,担任了八年多的研究主管兼首席科学家,直接参与构建了早期的 GPT 架构。可以说,OpenAI 能有今天,他是地基工之一。
私下里,Sutskever 是出了名的“信仰派”,他几乎有点神秘地相信 AI 的潜力,坚信“超级智能”的未来一定会到来。《大西洋月刊》有篇文章还讲过,他曾在 OpenAI 的公司派对上带头喊口号:
“感受 AGI!感受 AGI!”
2023 年 11 月 OpenAI 发生内乱,Sam Altman 被开除又被复职的那一周,Sutskever 一开始投票支持开除,但之后又在 X 上发文公开道歉,并签名要求董事会下台、让 Altman 回来。这事的来龙去脉外界可能永远搞不清,但很可能是促使 Sutskever 离开 OpenAI 的关键。
当时他正负责 OpenAI 的“超级对齐团队”(superalignment team),专注做通用AI的安全研究。2024 年 5 月,他走后,这个团队也直接解散了。
SSI 是 Sutskever 联合前 OpenAI 研究员 Daniel Levy 和前苹果 AI 主管 Daniel Gross 于 2024 年 6 月成立的公司。和 OpenAI 的商业化战略不同,SSI 完全不卖产品,目标就是全力推进“超级智能”,同时把“安全”摆在同样高的位置。
“我们把安全和能力看作两个要同时解决的技术问题,要靠工程和科学的重大突破来搞定。我们打算以最快速度推进能力,同时确保我们的安全工作始终领先。
这样,我们就能‘平静地扩展’。
我们唯一的关注点就是搞科研,不会被管理琐事或产品周期分心。我们的商业模式也保证了安全、保密和进展都不会受到短期利益的干扰。”
这家公司没有产品,没有路线图,也没商业计划,但已经从 Sequoia、DST Global、SV Angel 等投资机构那里融了 10 亿美元。据 Bloomberg 报道,下一轮融资也快了,目标是超过 10 亿美元、估值达 300 亿。
说白了:一家公司啥也没卖,还没打算卖,就已经估值 300 亿美元——确实够魔幻。
Ilya Sutskever 于 2020 年 5 月在 Lex Fridman 播客上的发言。
Thinking Machines Lab ⭐
Mira Murati 是 OpenAI 能从“一个有理想的非营利组织”变成“国家级基础设施核心”的关键人物之一。
她 2018 年加入 OpenAI,任“应用AI与合作副总裁”,之前是特斯拉的高级产品经理。2020 年升任 CTO,Sam Altman 短暂被踢走的那会儿,她还当了一段时间的临时CEO。2024 年 9 月,在 OpenAI 发布 o1-preview 和 o1-mini 系列模型之后,Murati 宣布离职。
2025 年 2 月 18 日,Thinking Machines Lab 正式脱离隐身模式。Murati 是 CEO 和联合创始人,带着十多个前 OpenAI 员工,包括:
- 首席科学家 John Schulman(OpenAI 联合创始人、前 Anthropic 安全研究员)
- CTO Barret Zoph(前 OpenAI 研究副总裁)
- Lillian Weng(前 OpenAI 安全主管)
这家公司注册为“公共利益公司”(Public Benefit Corporation,PBC),也就是说它虽然是盈利公司,但法律上必须兼顾社会公益,还得每年发布“公益报告”说明自己怎么在实现公共使命。
Thinking Machines Lab 的目标是推动科研社区对前沿AI系统的理解,让它们变得“更透明、可定制、能力更广泛”。公司特别强调“科学进展是大家一起干出来的”,还承诺会积极对外合作——这和 OpenAI 的封闭路线完全相反,现在整个行业几乎都学 OpenAI 的保密作风了。
“这些系统是怎么训练出来的,只有少数顶级实验室知道,这限制了公众对AI的讨论,也影响人们有效使用AI的能力。而且这些系统现在还很难定制,很难适配每个人的具体需求和价值观。”
Thinking Machines Lab 想造的是“更灵活、适应性更强、可个性化的AI系统”,用来“与人协作”。虽然他们的公司使命声明里没有写“超级智能”或“AGI”,但从创始人的背景来看,这明显就是奔着那方向去的。他们的重点是做出“更强的多模态能力”,最终推动“重大发现和工程突破”。
总体看,这家公司和 OpenAI 的目标差不多,但方法路线完全不一样:他们更看重科学协作和开源研究,而不是一味加码扩展参数量。
“我们关注的是:我们的系统如何在现实世界中创造真正的价值。最重要的突破,常常不是靠优化已有指标,而是靠重新思考目标。”
Mira Murati 在 2024 年春季 OpenAI 更新大会上发布 GPT-4o 时的画面。图源:OpenAI
📸 François Chollet,深度学习框架 Keras 的作者,前 Google 高级工程师,ARC-AGI 测评体系提出者。图源网络,背景经处理。
Ndea ⭐
François Chollet 在 2025 年 1 月和联合创始人 Mike Knoop 一起创办了 Ndea。两人都在软件工程领域有深厚背景:Chollet 在 Google 干了将近十年,Knoop 是自动化平台 Zapier 的联合创始人、前产品和工程主管。
Chollet 在 AI 社区里声望很高,主要有两个代表作:第一,在 2015 年加入 Google 之前,他开发了 Keras —— 一个非常流行的深度学习框架,给 AI 神经网络提供了 Python 接口;第二,2019 年 11 月他发了一篇论文《On the Measure of Intelligence》,批判传统 benchmark 测试没法准确衡量 AI 的通用智能。这篇论文还推出了一个新测试标准:ARC-AGI(人工通用智能的抽象与推理语料库),被认为是一个更靠谱的 AGI 测评代理。测试题是一堆谜题,人类觉得简单,但 AI 做起来很头大。
2024 年 6 月,Chollet 和 Knoop 启动了 ARC Prize 基金会,奖金池高达 100 万美元,鼓励参赛团队用开源方式挑战 ARC-AGI benchmark。最终胜出团队在测试中得了 53.5% 的分数,拿走了 2.5 万美元奖金,最佳论文也领到了 5 万。新版测试 ARC-AGI-2 的新一轮比赛预计在 2025 年第一季度举行。
根据 Ndea 官网的介绍,这个名字(念起来像 idea 多了个 n)来源于希腊词 ennoia(直觉理解)和 dianoia(逻辑推理)。延续 ARC Prize 的精神,Ndea 的方向就是研究 AI 怎么能发展出真正的智能,不只是考高分。具体来说,他们的主攻方向是把深度学习和“程序合成”这门前景很大但还没成熟的技术结合起来。
“不是在连续的嵌入空间里对数据点做内插,而是去找一段程序,或一个模型,能完整解释观察到的数据。这种方式泛化能力强、数据利用率高,只需要几个样本就能学会。”
Ndea 的目标是:用 AI 加速科学发现的进程。Chollet 和 Knoop 坚信,现在的深度学习 AI 根本不够格,因为它们*“一碰到开放式问题就崩了”,而且“永远被人类教的东西限制着”。*要真正推进 AI 发展,就得有一种更通用的智能,“靠堆规模的老路走不通”。
“今天,科学进步能不能加速,就看有没有一种 AI,具备独立发明和发现的能力。这种能力,就是通往无限想象的入口。”
📸 *François Chollet(左)与 Mike Knoop。*两人共同创办了 Ndea,致力于探索通用人工智能(AGI)的新路径。图源网络。
随着 AI 发展的格局不断演变,一波新锐初创公司正带着更大胆的愿景,挑战现在主流的技术范式。像 Thinking Machines Lab、Safe Super Intelligence 和 Ndea 这样的公司,正在寻找实现 AGI 的另一种路径——那是一条建立在科学合作、安全机制、和开源研究基础上的路。
它们不走传统的“扩规模”路线,但有一个共同信仰:人类需要的是一种更通用的智能——能适应、能推理、能协作,而不是现在这些只能靠加参数、调数据的模型。
随着这些新势力获得更多资源和关注,未来的 AI 世界可能会彻底变样:更重创新、更重协作、更重真正的“智能”,不再只是参数量竞赛。AGI 的征途,远远没有结束,而我们正处在它的下一个篇章起点上。
🚀 AI创业项目拼的不是概念,而是有没有办法落地成产品。
我现在聚焦做“AI软硬件一体解决方案”,从芯片、系统到模型训练都能打通。如果你也在搞AI、做项目或需要靠谱技术方案,欢迎关注或私信交流。
📩 有些朋友问过我怎么搭建自己的AI系统,我准备整理一份实用的【部署流程图】,欢迎私信我领取。