hdu 3501 欧拉函数(求小于n与n不互质的数之和)

点击打开链接

求小于n的与n不互质的数之和
先证下gcd(n,i) = gcd(n,n-i)

e=gcd(n,i)  f=gcd(n,n-i)

e|n&&e|i-> e|n-i e<=f
f|n&&f|n-i f|i   e>=f 所以e=f


即若gcd(n,i)=1 gcd(n,n-i)=1 与n互质的数之和为n的成对存在
(n,n/2)=n/2 不互质 不会重复计算 
所以与n互质的数之和为n*(phi[n]/2)

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
ll Euler(ll n)
{
	//Euler(n)=n*(1-1/p1)*(1-1/p2)...(1-1/pn)
	//通分=n*((p1-1)/p1)*((p2-1)/p2)...((pn-1)/pn)
	ll m=sqrt(n+0.5);
	ll ans=n;
	for(int i=2;i<=m;i++)// n的素因子i 
	{
		if(n%i==0)
		{
			ans=ans/i*(i-1);		 
		}
		while(n%i==0)//不在考虑素因子i 
		n/=i;
	}
	if(n>1)//素因子大于m 
	ans=ans/n*(n-1);
	
	return ans;
}
int main()
{
	ll n;
	while(cin>>n&&n)
	{
		ll ans=Euler(n);
		
		// 求小于n的与n不互质的数之和
		//先证下gcd(n,i) = gcd(n,n-i)
		// e=gcd(n,i)  f=gcd(n,n-i)
		//e|n&&e|i-> e|n-i e<=f
		//f|n&&f|n-i f|i   e>=f 所以e=f
		//即若gcd(n,i)=1 gcd(n,n-i)=1 与n互质的数为成对存在&&和为n
		// (n,n/2)=n/2 不互质 不会重复计算 
		//所以与n互质的数之和为n*(phi[i]/2) 
		ll sum=((1+(n-1))*(n-1))/2;
		ans=n*ans/2;
		sum-=ans;
		sum=sum%mod;
		cout<<sum<<endl;		
	}
	return 0;
}


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值