tensorflow tfserving 部署多个模型、使用不同版本的模型

本篇主要介绍使用tfserving和docker同时部署多个模型,使用不同版本的模型,基本的流程与部署单个模型的过程类似,(关于运行tfserving容器使用单个模型进行预测的相关步骤可以参见 使用docker和tf serving搭建模型预测服务。)不同之处在于需要用到一个多模型的配置文件。首先得到多个可以用于tfserving预测的模型文件,相关步骤可以参考使用savedModel保存模型。本例中用使用savedModel保存模型中的相关代码生成三个模型,分别建立三个文件夹,将得到的模型分别放入,最后的文件结构如下图。其中100001文件夹表示模型的版本,可以在model1下放置不同版本的模型,默认情况下会加载具有较大版本号数字的模型。
在这里插入图片描述

1. 多模型部署

在multiModel文件夹下新建一个配置文件model.config,文件内容为:

model_config_list:{
    config:{
      name:"model1",
      base_path:"/models/multiModel/model1",
      model_platform:"tens
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值