20240604日志:Attention

# location:beijing

Attention[^1]

single head of attention

Attention blocks showed in Fig. 1 allow vectors to talk to each other and pass information back and forth to update their values.
在这里插入图片描述

Fig. 1.1 single head attention (red rectangle)

there is an example to understand the mechanism of Attention. Fig. 1. shows that vector E n ⃗ \vec{\mathbf{E}_n} En is a combination of token’s meaning and positional information (M&P). then E n ⃗ \vec{\mathbf{E}_n} En will be sent to Attention blocks.
在这里插入图片描述

Fig. 1.2 vector with information of meaning and position

the input of Attention E n ⃗ \vec{\mathbf{E}_n} En will be figured by three linear layers: V, K, Q for feature shifting.
We can see Q as a method that adds attributes that can receive information of M&P from in-context words(vectors) to E n ⃗ \vec{\mathbf{E}_n} En . And the outcomes are Q n ⃗ \vec{\mathbf{Q}_n} Qn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值