1.方法
1.1 基于特征的高维空间低秩分解
PCA已经是老朋友了,每次一说主成分都会出现PCA。这篇文章1利用预训练数据的子集作为校准数据集 D c a l = { x i } i = 1 n \mathcal{D}_{cal}=\{x_{i}\}_{i=1}^{n} Dcal={
xi}i=1n,首先用校准数据集的样本协方差矩阵(SCM)估计整个特征空间分布的Y的协方差矩阵
C o v S ( Y ) = 1 n − 1 ∑ i = 1 n ( y i − y ˉ ) T ( y i − y ˉ ) (1) Cov_S(\boldsymbol{Y})=\frac{1}{n-1}\sum_{i=1}^n(\boldsymbol{y}_i-\bar{\boldsymbol{y}})^T(\boldsymbol{y}_i-\bar{\boldsymbol{y}})\tag{1} CovS(Y)=n−11i=1∑n(yi−yˉ)T(yi−yˉ)(1)
式中 y i \boldsymbol{y}_i yi表示 x i \boldsymbol{x}_i xi的特征, y ˉ \bar{\boldsymbol{y}} yˉ是校准数据集的特征值平均值。但文章指出,计算高维的协方差矩阵并不简单,他们提出了合并协方差矩阵(PCM),把校准数据集分成 m m m组,对每一组分别计算协方差矩阵最后求平均得PCM
C o v P ( Y ) = 1 m ∑ k = 1 m C o v S ( Y k ) (2) Cov_P(\boldsymbol{Y})=\frac{1}{m}\sum_{k=1}^mCov_S(\boldsymbol{Y}_k)\tag{2} CovP(Y)=m1