【pytorch】踩坑PyTorch中的dropout

作者:雷杰
链接:https://www.zhihu.com/question/67209417/answer/302434279
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。


刚踩的坑, 差点就哭出来了TT. — 我明明加了一百个dropout, 为什么结果一点都没变
使用F.dropout ( nn.functional.dropout )的时候需要设置它的training这个状态参数与模型整体的一致.
比如:

Class DropoutFC(nn.Module):
    def __init__(self):
        super(DropoutFC, self).__init__()
        self.fc = nn.Linear(100,20)

    def forward(self, input):
        out = self.fc(input)
        out = F.dropout(out, p=0.5)
        return out

Net = DropoutFC()
Net.train()
# train the Net

这段代码中的F.dropout实际上是没有任何用的, 因为它的training状态一直是默认值False. 由于F.dropout只是相当于引用的一个外部函数, 模型整体的training状态变化也不会引起F.dropout这个函数的training状态发生变化. 所以, 此处的out = F.dropout(out) 就是 out = out.
正确的使用方法如下, 将模型整体的training状态参数传入dropout函数

Class DropoutFC(nn.Module):
   def __init__(self):
       super(DropoutFC, self).__init__()
       self.fc = nn.Linear(100,20)

   def forward(self, input):
       out = self.fc(input)
       out = F.dropout(out, p=0.5, training=self.training)
       return out

Net = DropoutFC()
Net.train()
# train the Net

或者直接使用nn.Dropout() (nn.Dropout()实际上是对F.dropout的一个包装, 也将self.training传入了)

Class DropoutFC(nn.Module):
  def __init__(self):
      super(DropoutFC, self).__init__()
      self.fc = nn.Linear(100,20)
      self.dropout = nn.Dropout(p=0.5)

  def forward(self, input):
      out = self.fc(input)
      out = self.dropout(out)
      return out
Net = DropoutFC()
Net.train()
# train the Net
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值