动手学PyTorch | (10) Dropout(丢弃法)

除了前⼀节介绍的权􏰀重衰减以外,深度学习模型常常使用丢弃法(dropout)来应对过拟合问题。丢弃法有⼀些不同的变体。本节中提到的丢弃法特指倒置丢弃法(inverted dropout)。

目录

1. 方法

2. 从0开始实现

3. 简洁实现

4. 小结


1. 方法

回忆⼀下,(多层感知机)的图示描述了一个单隐藏层的多层感知机。其中输⼊个数为4,隐藏单元个数为5,且隐藏单元h_i(i=1,...,5)的计算表达式为:

这里\phi是激活函数,x_1,...,x_4是输入,隐藏单元i的权重参数为w_{1i},...,w_{4i},偏差参数为b_i.当对该隐藏层使⽤丢弃法时,该层的隐藏单元将有一定概率被丢弃掉。设丢弃概率为p,那么有p的概率 h_i(i=1,...,5)会被清零,有1-p的概率h_i(i=1,...,5)会除以1-p做拉伸。丢弃概率是丢弃法的超参数。具体来说,设随机变量\xi _i为 0和1的概率分别为p和1-p。使⽤丢弃法时我们计算新的隐藏单元h_i':

由于

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值