高等数学18讲(19版)反常积分的计算与敛散性判别

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_35452997/article/details/88390573

7.49

分析:本题因为有绝对值,且有一个无穷间断点x=0;所以分成两个区间来做即可

注意本题要记住两个基本的积分公式即可;

7.50

分析:

关键是分子,分母同时乘以e^(x-3),再利用1/a*arctan(x/a)的公式来进行求解;

 

7.51

看到A^2-1;即想到要令A=secx^2;

答案:

 7.52

分析:

(1)分子,分母上下同乘e^2x;

(2)再使用分部积分法来进行计算;

(3)最后设e^x=t,利用换元法来进行计算;

7.53

答案:

分析:利用右边的分部积分来做,注意可能会算错;记得乘前面的系数;

二:敛散性的判别

7.54 

答案:

 

分析,先判别这是什么类型的反常积分;

 再对原极限进行化简

7.55

答案:

 

本题应该明白这样一个事实:

lnx影响力相对于幂函数可忽略;

7.56

 答案:

分情况进行讨论,以1分界线;

k=1;k>1;k<1;

7.57(有点不会)

 答案:

 

展开阅读全文

没有更多推荐了,返回首页