数学分析(十二)-数项级数2-正项级数-敛散性判别法4:积分判别法【利用非负函数的单调性和积分性质, 并以反常积分为比较对象来判断正项级数的敛散性】

积分判别法用于判断正项级数的敛散性,通过定理12.9阐述了级数与反常积分的关系。当f(x)在[1,+∞)上单调递减且非负时,级数∑n=1∞f(n)收敛的充要条件是∫1+∞f(x)dx收敛。通过举例讨论了p级数以及包含对数的级数的敛散性。" 132247726,19694669,C++打造梦幻桌面效果,"['C++编程', 'Windows开发', '图形界面']
摘要由CSDN通过智能技术生成

积分判别法是利用非负函数的单调性和积分性质, 并以反常积分为比较对象来判断正项级数的敛散性.

定理 12.9

f f f [ 1 , + ∞ ) [1,+\infty) [1,+) 上的减函数, 则级数 ∑ n = 1 ∞ f ( n ) \sum_{n=1}^{\infty} f(n) n=1f(n) 收敛的充分必要条件是反常积分 ∫ 1 + ∞ f ( x ) d x \int_{1}^{+\infty} f(x) \mathrm{d} x 1+f(x)dx 收敛.


∑ n = 1 ∞ f ( n ) \sum_{n=1}^{\infty} f(n) n=1f(n) 收敛, 其和为 S S S, 则 lim ⁡ n → ∞ f ( n ) = 0 \lim \limits_{n \rightarrow \infty} f(n)=0 nlimf(n)=0. 又因为 f f f [ 1 , + ∞ ) [1,+\infty) [1,+) 上的减函数,所以 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0, 从而 f f f [ 1 , + ∞ ) [1,+\infty) [1,+) 上非负的减函数, ∑ n = 1 ∞ f ( n ) \sum_{n=1}^{\infty} f(n) n=1f(n) 为正项级数.

于是对任意正整数 m m m, 有

∫ 1 m f ( x ) d x = ∑ n = 2 m ∫ n − 1 n f ( x ) d x ⩽ ∑ n = 1 m − 1 f ( n ) ⩽ ∑ n = 1 ∞ f ( n ) = S . \int_{1}^{m} f(x) \mathrm{d} x=\sum_{n=2}^{m} \int_{n-1}^{n} f(x) \mathrm{d} x \leqslant \sum_{n=1}^{m-1} f(n) \leqslant \sum_{n=1}^{\infty} f(n)=S . 1mf(x)dx=n=2mn1n

  • 20
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值