推荐系统(四)深度神经网络DNN

本文详细介绍了深度神经网络(DNN)在推荐系统中的应用,特别是如何使用 Softmax DNN 进行多类预测,以解决矩阵分解的局限性。DNN 模型可以结合 User 和 Item 特性,通过 Softmax 层预测交互概率,从而提高推荐的准确性。文章还探讨了负采样、矩阵分解与 DNN 的区别,并指出在大型数据集上,矩阵分解可能更具优势,而 DNN 更适合捕捉个性化偏好。
摘要由CSDN通过智能技术生成

在《推荐系统(二)协同过滤》一文中,笔者介绍了如何使用矩阵分解来学习嵌入。矩阵分解具有一些局限性:

  • 基础矩阵分解只用了 UserID(QueryID) 和 ItemID 两个维度的信息,所有学到的知识都蕴含在 User 向量和 Item 嵌入中。可解释性差,同时,学习过程中很难融合更多有用的特征,比如用户的统计学信息(收入水平、学历、年龄、人生阶段等)以及商品的基础特征信息,如类目、品牌等。因而,基础矩阵分解的泛化能力受到一定的限制。
  • 因子分解机(FM)可以看做是基础矩阵分解的推广,它能够很好地融入更多维度的特征,从而学到的模型泛化能力更强,具体可以参考这篇文章:《主流CTR模型的演化及对比》。
  • 矩阵分解很难增量在线计算,从而不能处理用户的实时行为反馈,只能基于历史行为来计算。没有实时处理能力的推荐系统必然不会是一个好的推荐系统,比如,京东双11活动,当天的用户行为模式必然与平时的行为模式很不一样,推荐系统如果不能处理当天用户的实时行为,及时捕获用户的新的偏好,将会使得推荐效果大打折扣。

深度神经网络 (DNN) 模型可以解决矩阵分解的这些局限性。DNN 可以轻松地合并 User 特征和 Item 特征(由于网络输入层的灵活性),从而帮助捕获用户的特定兴趣并提高推荐的相关性。

目录

1.用于推荐的 Softmax DNN

1.1 模型输入

1.2 模型架构

1.3 Softmax 输出:预测概率分布

1.4 损失函数

1.5 Softmax 嵌入

2.DNN 和矩阵分解

2.1 可以使用 Item 特性吗?

3.Softmax 训练

3.1 训练数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jin_Kwok

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值