机器学习5:基于线性回归理解减少“损失”的方法

本文详细介绍了如何在机器学习的线性回归模型中减少损失,包括迭代法、梯度下降、学习率优化以及随机梯度下降等方法。通过实例解析,阐述了不同学习率对模型收敛速度的影响,并强调了在实际应用中找到合适学习率的重要性。
摘要由CSDN通过智能技术生成

在上节《机器学习4:基本术语》中,笔者介绍了“损失(Loss)”的定义,在训练模型时,减少损失(Reducing Loss)是极为关键的,只有“损失”足够小的机器学习系统才有实用价值。

在本节中,笔者将基于线性回归(Linear Regression)来介绍减少损失的具体方法。

目录

1.线性回归案例

2.减少损失:迭代法(An Iterative Approach)

3.减少损失:梯地下降(Gradient Descent)

4.减少损失:学习率(Learning Rate)

5.减少损失:优化学习率(Optimizing Learning Rate)

6.减少损失:随机梯度下降(Stochastic Gradient Descent)

7.参考文献


1.线性回归案例

蟋蟀(一种昆虫)在炎热的日子里会比在凉爽的日子里更频繁地鸣叫。几十年来,专业和业余科学家对蟋蟀每分钟鸣叫次数和温度的数据进行了统计,得到了一些数据,如图 1 所示。我们将这些数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jin_Kwok

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值