在上节《机器学习4:基本术语》中,笔者介绍了“损失(Loss)”的定义,在训练模型时,减少损失(Reducing Loss)是极为关键的,只有“损失”足够小的机器学习系统才有实用价值。
在本节中,笔者将基于线性回归(Linear Regression)来介绍减少损失的具体方法。
目录
2.减少损失:迭代法(An Iterative Approach)
5.减少损失:优化学习率(Optimizing Learning Rate)
6.减少损失:随机梯度下降(Stochastic Gradient Descent)
1.线性回归案例
蟋蟀(一种昆虫)在炎热的日子里会比在凉爽的日子里更频繁地鸣叫。几十年来,专业和业余科学家对蟋蟀每分钟鸣叫次数和温度的数据进行了统计,得到了一些数据,如图 1 所示。我们将这些数