搜索准确性提升 20%,Jina Reranker 成为 RAG 优化的新标杆!

Jina Reranker 是一款专为提高搜索准确性设计的模型,尤其适用于RAG(检索增强生成)场景。在LlamaIndex RAG、BEIR、MTEB和LoCo等多个评测中取得领先,相比简单RAG系统,命中率提升8%,MRR提升33%。Jina Reranker擅长处理长文本,支持RAG场景,提供高效的二次重排,提升搜索结果的相关性和准确度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在整合大型语言模型(LLM)到业务流程时,企业经常会遇到一些头疼的问题,比如怎样保持数据时效性、避免幻觉现象,以及如何保护数据安全等等。为了解决这些问题,检索增强生成(RAG)技术应运而生,它不仅帮助我们克服了这些挑战,还引领了信息检索的新方向。

虽然 RAG 系统及其科普非常流行,但在实际使用中,我们会发现它“入门易,精通难”。目前,业界的讨论主要集中在如何改进内容提取、文档分块,以及 Embedding 模型等技术,但很少有人提到提升搜索准确度的关键步骤 —— Reranker。

日前,我们正式发布了 Jina Reranker(jina-reranker-v1-base-en),专为提高搜索准确性打造。Jina Reranker 在多个权威测评中屡获领先,实验数据显示,相比简单 RAG 系统,搭载该模型的检索系统命中率提高 8%,MRR 更是飙升 33%。

模型链接: https://jina.ai/reranker/

什么是 Reranker

你可能会问,既然向量检索已经根据相似度给出了初步排序,为什么我们还需要 Reranker 呢?

下表阐述了向量检索和 Reranker 模型之间的主要差异。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值