RAG检索增强之Reranker重排序模型详解!

什么是Reranker模型?

ReRanker模型是对RAG检索返回的结果进行重新排序的模型。也就是下图所示中2nd Retrieval的模型。具体来说,ReRanker模型在RAG Pipeline中扮演着第二阶段的角色,即在初始检索步骤之后,对检索出的文档块chunks进行重新排序,以确保相关的文档块优先被传递给LLM进行处理。

为什么需要Reranker模型?

在回答这个问题之前,我们先深入了解一下背后的问题。

RAG通过在大量文本文档中进行语义搜索来工作,这些文档数量可能达到数十亿。为了实现大规模搜索的快速响应,我们一般采用向量搜索技术,即将文本转化为向量后,放入一个向量空间内,通过余弦相似度等度量标准来比较它们与查询向量之间的相似度。

向量搜索的前提是需要向量。这些向量基本上是将文本背后的意义压缩成固定维度的向量(如768或1536维),这一过程不可避免地会导致信息丢失。因此,常常会发现,即便是排名靠前的文档,也可能会遗漏一些关键信息。

如果较低位置的文档包含了有助于LLM更好地形成回答的相关信息,这些信息就很容易被忽略。这该怎么办?一个简单的方法就是增加返回的文档数量,即增加top_k值,并将它们全部传递给LLM。

我们此处关注的指标是召回率,即“我们检索到了多少相关文档”。值得注意的是,召回率衡量的是系统能够找到的相关文档的比例,而不考虑检索到的文档总数。因此,理论上通过返回所有文档可以实现完美的召回率。

然而,这在实际操作中是不可行的,一是因为大语言模型(LLM)对输入文本量有一定的限制,我们称之为**「上下文窗口」**。即使像Anthropic 的 Claude这样的模型拥有高达100K Token的巨大上下文窗口,也不能无限制地增加输入文本量。二是当上下文窗口被过多的Token填满时,大语言模型的回忆能力和执行指令的效果都会受到影响。研究表明,过度填充上下文窗口会降低模型在该窗口中检索信息的能力,从而影响生成回答的质量。

为了解决召回率和LLM上下文窗口之间的矛盾,Reranker模型提供了一种有效的解决方案。具体步骤如下:

  1. 最大化检索召回率

    在初始检索阶段,通过增加向量数据库返回的文档数量(即增加 top_k 值),可以提高检索的召回率。这意味着尽可能多地检索相关文档,确保不会遗漏任何可能有助于 LLM 形成高质量回答的信息。

  2. 重新排序并筛选最相关的文档

    在第二阶段,使用 Reranker 模型对检索到的大量文档进行> 重新排序。Reranker 模型能够更精确地评估查询与文档的相> 关性,筛选出最相关的文档,并减少最终传递给 LLM 的文档> 数量。这一步骤的关键在于:

  • 重新排序:根据查询和文档的相关性分数对文档进行重新排序。

  • 筛选:只保留最相关的文档,确保这些文档在 LLM 的上下文窗口内。

  1. 确保 LLM 处理高质量信息

    通过上述两步,Reranker 模型不仅提高了检索的召回率,还确保了传递给 LLM 的文档是最相关的。这使得 LLM 能够基于高质量的信息生成更准确、更有价值的回答,同时避免了上下文窗口过载的问题。

Reranker模型的原理

重排序模型(也被称为Cross-Encoder)是一种模型,能够针对一个查询和文档对,输出它们的相似度分数。我们利用这个分数对文档按照与查询的相关性进行重新排序。

其本质是一个包含两阶段的检索系统:

  • 第一阶段:快速检索(Vector DB或Bi-Encoder检索):使用双编码器(Bi-Encoder)或稀疏嵌入模型从大数据集中快速提取一组相关文档。这一阶段的核心目标是高效地缩小搜索范围,确保能够在短时间内处理大规模数据集。双编码器将查询和文档分别编码为向量,并通过余弦相似度等度量标准计算它们的相似性。

  • 第二阶段:精确重排序(Reranker / Cross-Encoder):使用重排序模型(Reranker)对第一阶段提取的文档进行重新排序。Reranker模型能够更精确地评估查询与文档的相关性,输出它们的相似度分数,并根据相似度分数对文档进行重新排序,返回最相关的前K个文档。这一阶段的目标是提高检索结果的相关性,确保最相关的文档优先传递给大语言模型(LLM)。

为什么采用两阶段策略?

是因为从大数据集中检索少量文档的速度远快于对大量文档进行重排序。简而言之,重排序器处理较慢,而检索器速度快。

尽管重排序器的处理速度较慢,但我们仍然选择使用它们,关键在于其精确度远超过嵌入模型。

双编码器(Bi-Encoder)精度较低的根本原因在于:

  1. 双编码器将文档和查询分别编码为固定维度的向量(如768或1536维),这一过程不可避免地会导致信息丢失。文本的丰富语义被压缩成一个低维向量,无法完全保留原始文本的所有潜在含义。

  2. 双编码器在用户提出查询之前就已经创建了嵌入,因此它对查询的具体内容一无所知。这意味着它只能生成一个泛化的、平均化的含义,而无法针对具体查询进行优化。这种静态的嵌入方式限制了其在处理复杂查询时的表现。

而重排序器(Reranker / Cross-Encoder)能够在大型Transformer中直接处理原始文本信息,避免了信息压缩带来的损失。它可以直接分析查询和文档的原始文本,确保所有相关信息都能被充分考虑。

然而,尽管重排序器具有更高的精度,但它也有代价,就是需要更多的时间来生成相似度分数。

因此在实际应用中,通常会结合两者优势,采用两阶段检索策略:

  • 第一阶段:使用双编码器快速检索出一批候选文档。

  • 第二阶段:使用重排序器对这批候选文档进行重新排序,确保最终返回的文档是最相关的。

这种组合方式既能保证检索的速度,又能提高结果的准确性。例如,在处理4000万条记录的情况下,如果仅使用重排序器,可能会需要超过50小时来返回一个查询结果;而使用双编码器和向量搜索,则可以在不到100毫秒内完成初步筛选。随后,再用重排序器对筛选出的少量文档进行精排,既提高了效率又保证了质量。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 关于Reranker模型的介绍 #### 1. 定义与概念 Reranker是一种专门设计用于改进信息检索系统的组件,旨在提升初始检索结果的质量。通过二次评估初步筛选出来的候选文档列表,Reranker能够更加精准地识别出那些真正与用户查询意图高度匹配的内容[^3]。 #### 2. 工作原理 在自然语言处理(NLP)的任务框架下,特别是对于检索增强生成(RAG)流程而言,当接收到一个问题时,系统首先会在大型语料库中查找可能相关的资料片段;随后,利用像`bge-reranker-large`这样的高级Reranker模型对这些初选材料按照其与提问之间的关联度打分并重新排列顺序[^4]。 ```python from transformers import pipeline # 创建一个管道实例,加载预训练好的reranker模型 nlp_rerank = pipeline('text-classification', model='modelscope/bge-reranker-large') def rerank_documents(query, documents): """给定查询和一系列文档,返回按相关性排序后的文档""" inputs = [{'query': query, 'document': doc} for doc in documents] scores = nlp_rerank(inputs) # 将得分附加到原始文档后面,并依据得分降序排列 scored_docs = [(doc, score['score']) for (doc, score) in zip(documents, scores)] ranked_docs = sorted(scored_docs, key=lambda x: x[1], reverse=True) return [item[0] for item in ranked_docs] # 示例用法 example_query = "如何制作披萨" sample_documents = [ "意大利面的做法", "家庭自制美味披萨教程", "烘焙面包技巧分享" ] print(rerank_documents(example_query, sample_documents)) ``` 此代码展示了如何使用HuggingFace Transformers库中的pipeline接口快速搭建起一套简单的Reranker工作流,其中包含了从准备输入数据到最后输出经过重排的新序列整个过程。 #### 3. 应用场景 除了上述提到的基础功能外,在实际应用层面,Reranker还广泛应用于搜索引擎优化(SEO),问答系统(Q&A systems), 推荐引擎等领域内,帮助改善用户体验的同时也提高了平台整体的服务效率和服务水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值