R语言实现Monte Carlo 方法进行概率和分位数计算

本文介绍了如何使用R语言实现蒙特·卡罗方法进行概率和分位数的计算。通过大数定律,利用随机数生成模拟实验,对正态分布的概率进行了验证。同时,提供了代码示例展示分位数计算过程,讨论了样本量对计算精度的影响。
摘要由CSDN通过智能技术生成

蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。与它对应的是确定性算法。

通过计算机强大的浮点计算和整数计算能力,我们现在可以做到生成数量巨大的随机数来估计最终概率。其原理为大数定理,即以大量重复某一实验时,最后的频率无限接近事件概率。本文意在讨论蒙特·卡罗方法对统计量的概率论与数理统计结果进行验证,举正态分布的例子。

概率代码实现如下:

mu=0
sigma=1
n=100
nn=1000000
t=.1  ##分位数变量,可任意设置
k<-numeric(nn)  ##P(T(x1, x2, · · · , xn) ≤ t)


for(i in 1:nn){
  x=rnorm(n,mu,sigma)
  k[i]=(x<=t)
}
work1<-mean(k)

囿于计算机配置,我们仅将总体样本量(nn)设置为1000000。

该代码实现的思想是:建立k为一空列表,然后批量生成满足参数条件的正态分布,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值