蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。与它对应的是确定性算法。
通过计算机强大的浮点计算和整数计算能力,我们现在可以做到生成数量巨大的随机数来估计最终概率。其原理为大数定理,即以大量重复某一实验时,最后的频率无限接近事件概率。本文意在讨论蒙特·卡罗方法对统计量的概率论与数理统计结果进行验证,举正态分布的例子。
概率代码实现如下:
mu=0
sigma=1
n=100
nn=1000000
t=.1 ##分位数变量,可任意设置
k<-numeric(nn) ##P(T(x1, x2, · · · , xn) ≤ t)
for(i in 1:nn){
x=rnorm(n,mu,sigma)
k[i]=(x<=t)
}
work1<-mean(k)
囿于计算机配置,我们仅将总体样本量(nn)设置为1000000。
该代码实现的思想是:建立k为一空列表,然后批量生成满足参数条件的正态分布,