可测函数与Lebesgue测度
一、可测集与可测函数的定义
-
可测集的定义:
- 可测集是指在给定的测度空间中,能够被测量其“大小”的集合。具体来说,对于一个集合
A
⊆
X
A \subseteq X
A⊆X 和测度空间
(
X
,
A
,
μ
)
(X, \mathcal{A}, \mu)
(X,A,μ),集合
A
A
A 是可测的,当且仅当对任意集合
B
⊆
X
B \subseteq X
B⊆X,满足:
μ ( A ∩ B ) + μ ( A ∩ B c ) = μ ( A ) \mu(A \cap B) + \mu(A \cap B^c) = \mu(A) μ(A∩B)+μ(A∩Bc)=μ(A)
其中, μ \mu μ 是测度, B c B^c Bc 是 B B B 的补集。
- 可测集是指在给定的测度空间中,能够被测量其“大小”的集合。具体来说,对于一个集合
A
⊆
X
A \subseteq X
A⊆X 和测度空间
(
X
,
A
,
μ
)
(X, \mathcal{A}, \mu)
(X,A,μ),集合
A
A
A 是可测的,当且仅当对任意集合
B
⊆
X
B \subseteq X
B⊆X,满足:
-
Lebesgue可测函数的定义:
-
Lebesgue可测函数是指在给定测度空间中,能够被“测量”的函数。一个函数 f : X → R f: X \to \mathbb{R} f:X→R 在测度空间 ( X , A , μ ) (X, \mathcal{A}, \mu) (X,A,μ) 上是可测的,当且仅当对于任意的Borel集合 B ⊆ R B \subseteq \mathbb{R} B⊆R,集合 f − 1 ( B ) ∈ A f^{-1}(B) \in \mathcal{A} f−1(B)∈A,即 f − 1 ( B ) f^{-1}(B) f−1(B) 是可测集。
-
举例:
- 例如,考虑函数 f ( x ) = sin ( x ) f(x) = \sin(x) f(x)=sin(x) 在区间 [ 0 , π ] [0, \pi] [0,π] 上。此函数是可测的,因为它是一个连续函数,连续函数在Lebesgue测度下总是可测的。
-
二、Lebesgue测度
-
Lebesgue测度的基本性质:
- 非负性:对于任何可测集 A ⊆ X A \subseteq X A⊆X,都有 μ ( A ) ≥ 0 \mu(A) \geq 0 μ(A)≥0。
- 可加性:对于任意可测集
A
1
,
A
2
,
…
A_1, A_2, \dots
A1,A2,…(且两两不交),有:
μ ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ μ ( A i ) \mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i) μ(i=1⋃∞Ai)=i=1∑∞μ(Ai)
这称为可数可加性。 - 测度空间的构造:Lebesgue测度通过对集合的“大小”进行标准化定义,例如,对于区间 [ a , b ] ⊂ R [a, b] \subset \mathbb{R} [a,b]⊂R,其Lebesgue测度为 μ ( [ a , b ] ) = b − a \mu([a, b]) = b - a μ([a,b])=b−a。
-
Lebesgue测度的构造:
- 对于实数集 R \mathbb{R} R,通过划分成一系列小区间(例如,使用有理数或开区间)来逐步构造Lebesgue测度。这个过程可以看作是“逼近”目标集合的大小,并通过极限过程得到准确的测度。
三、单调收敛定理与Fatou引理
-
单调收敛定理:
- 定理内容:如果
f
n
f_n
fn 是一列非负、单调递增的可测函数,且对每个
x
∈
X
x \in X
x∈X 有
f
n
(
x
)
→
f
(
x
)
f_n(x) \to f(x)
fn(x)→f(x)(其中
f
f
f 是极限函数),则:
lim n → ∞ ∫ f n d μ = ∫ lim n → ∞ f n d μ \lim_{n \to \infty} \int f_n d\mu = \int \lim_{n \to \infty} f_n d\mu n→∞lim∫fndμ=∫n→∞limfndμ- 这是Lebesgue积分理论中的一个重要定理,提供了在积分过程中极限交换的条件。
- 定理内容:如果
f
n
f_n
fn 是一列非负、单调递增的可测函数,且对每个
x
∈
X
x \in X
x∈X 有
f
n
(
x
)
→
f
(
x
)
f_n(x) \to f(x)
fn(x)→f(x)(其中
f
f
f 是极限函数),则:
-
Fatou引理:
- 定理内容:对于一列可测函数
f
n
f_n
fn,我们有:
∫ lim inf n → ∞ f n d μ ≤ lim inf n → ∞ ∫ f n d μ \int \liminf_{n \to \infty} f_n \, d\mu \leq \liminf_{n \to \infty} \int f_n \, d\mu ∫n→∞liminffndμ≤n→∞liminf∫fndμ- Fatou引理帮助我们在一些情况下交换极限和积分运算,尤其是在极限值可能不连续时,它为积分理论提供了有力的工具。
- 定理内容:对于一列可测函数
f
n
f_n
fn,我们有:
四、课堂活动
1. 通过实际例子帮助学生理解Lebesgue测度的定义与性质
活动内容:
-
例题 1: 给定区间 [ 0 , 1 ] [0, 1] [0,1] 和一个子集 A = { x ∈ [ 0 , 1 ] ∣ x 是有理数 } A = \{ x \in [0, 1] \mid x \text{ 是有理数} \} A={x∈[0,1]∣x 是有理数},讨论该集合的Lebesgue测度。
- 答案:因为有理数集是可数的,而Lebesgue测度对可数集为零,因此 μ ( A ) = 0 \mu(A) = 0 μ(A)=0。
-
例题 2: 考虑集合 B = [ 0 , 1 ] ∪ [ 2 , 3 ] B = [0, 1] \cup [2, 3] B=[0,1]∪[2,3] 在 R \mathbb{R} R 中,计算 B B B 的Lebesgue测度。
- 答案:利用可加性, μ ( B ) = μ ( [ 0 , 1 ] ) + μ ( [ 2 , 3 ] ) = 1 + 1 = 2 \mu(B) = \mu([0, 1]) + \mu([2, 3]) = 1 + 1 = 2 μ(B)=μ([0,1])+μ([2,3])=1+1=2。
2. 讨论单调收敛定理和Fatou引理的实际应用
活动内容:
-
例题 1: 考虑一列函数 f n ( x ) = 1 n f_n(x) = \frac{1}{n} fn(x)=n1 对 x ∈ [ 0 , 1 ] x \in [0, 1] x∈[0,1] 的情况,讨论单调收敛定理的应用,并计算该函数列的Lebesgue积分。
- 答案:通过单调收敛定理, f n ( x ) → 0 f_n(x) \to 0 fn(x)→0 在整个区间上,因此 ∫ 0 1 lim n → ∞ f n ( x ) d x = 0 \int_0^1 \lim_{n \to \infty} f_n(x) \, dx = 0 ∫01limn→∞fn(x)dx=0,并且 lim n → ∞ ∫ 0 1 f n ( x ) d x = 0 \lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 0 limn→∞∫01fn(x)dx=0。
-
例题 2: 讨论Fatou引理在某些函数列的极限积分中的应用,例如,计算极限积分的上界。
五、Python代码实现示例
Lebesgue测度和单调收敛定理的计算:
import numpy as np
import matplotlib.pyplot as plt
# 定义函数列 f_n(x) = 1/n
def f_n(x, n):
return 1 / n
# 计算积分
x = np.linspace(0, 1, 100)
integral_values = [np.trapz(f_n(x, n), x) for n in range(1, 11)]
# 绘制积分结果
plt.plot(range(1, 11), integral_values, label="积分值")
plt.axhline(y=0, color='r', linestyle='--', label="极限")
plt.title("单调收敛定理中的积分")
plt.xlabel("n")
plt.ylabel("积分值")
plt.legend()
plt.show()
Fatou引理应用示例:
# 定义函数列 f_n(x) = x^n
def f_n(x, n):
return x ** n
# 计算liminf
x = np.linspace(0, 1, 100)
liminf_values = [np.min([f_n(x, n) for n in range(1, 6)], axis=0) for _ in x]
# 绘制图像
plt.plot(x, liminf_values, label="liminf(f_n(x))")
plt.title("Fatou引理应用:liminf(f_n(x))")
plt.xlabel("x")
plt.ylabel("liminf(f_n(x))")
plt.legend()
plt.show()
六、总结
通过这节课,学生将理解Lebesgue测度的定义与性质,掌握如何通过可测集和可测函数来分析测度空间的结构。课堂活动通过具体的例子帮助学生掌握Lebesgue测度、单调收敛定理和Fatou引理的实际应用。通过Python代码实现,学生可以更直观地理解这些理论概念的计算和应用。