实变函数论4-可测函数2:叶戈罗夫定理

在数学分析中知道,一致收敛是函数列很重要的性质,它能保证极限过程和一些运算的可交换性.但一般而论,一个收敛的函数列在其收敛域上是不一定一致收敛的.

例如 f n ( x ) = x n f _ { n } ( x ) = x ^ { n } fn(x)=xn [ 0 , 1 ] [ 0 , 1 ] [0,1]上不一致收敛.但是只要从 [ 0 , 1 ] [ 0 , 1 ] [0,1] 的右端点去掉任意小的一段成为 [ 0 , 1 − δ ] , [ 0 , 1 - \delta ] , [0,1δ], { f n } \left\{ f _ { n } \right\} { fn}在其上就一致收敛了其实这一现象在某种意义下是带有普遍性的这就是下面要讲的叶戈罗夫( EropoB)定理,

定理(叶戈罗夫定理)

m E < ∞ , { f n } m E < \infty , \left\{ f _ { n } \right\} mE<,{ fn} E E E上一列 a . e . a . e . a.e. 收敛于一个 a . e . a . e . a.e. 有限的函数 f f f的可测函数,则对任意 δ > 0 , \delta > 0 , δ>0, 存在子集 E δ ⊂ E , E _ { \delta } \subset E , EδE, 使 { f n } \left\{ f _ { n } \right\} { fn} E δ E _ { \delta } Eδ 上一致收敛,且 m ( E \ E s ) < δ . m \left( E \backslash E _ { s } \right) < \delta . m(E\Es)<δ.

证明
由条件, m ( E [ ∣ f n ∣ = ∞ ] ) = 0 ( n = 1 , 2 , ⋯   ) ; m ( E [ ∣ f ∣ = ∞ ] ) = 0. m \left( E \left[ \left| f _ { n } \right| = \infty \right] \right) = 0 ( n = 1 , 2 , \cdots ) ; m ( E [ | f | = \infty ] ) = 0 . m(E[fn=])=0(n=1,2,);m(E[f=])=0.因此得 $m E _ { 0 } =$0,其中

E 0 = ⋃ n = 1 ∞ E [ ∣ f n ∣ = + ∞ ] ∪ E [ ∣ f ∣ = + ∞ ] . E _ { 0 } = \bigcup _ { n = 1 } ^ { \infty } E \left[ \left| f _ { n } \right| = + \infty \right] \cup E [ | f | = + \infty ] . E0=n=1E[fn=+]E[f=+].

E \ E 0 E \backslash E _ { 0 } E\E0 替代 E , E , E, 不妨设 f n ( x ) , f ( x ) f _ { n } ( x ) , f ( x ) fn(x),

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值