2025深圳杯&东三省数学建模竞赛A/B/C/D选题建议+初步分析

难度:A>C>B=D,开放度:D=B>A=C。原因如下:A题需多物理场建模(热弹性+结构力学),且需要结合仿真工具,专业门槛高。D题依赖生物数据的复杂特征提取和降噪,需处理高噪声混合信号。B题和C题以数学建模为主,但B题优化自由度更高,C题需处理电网拓扑约束。

同时,B题颜色空间转换需自定义损失函数,设计灵活性强,可结合多种优化方法。D题分析混合STR图谱的贡献者人数和比例,可尝试多种统计或机器学习模型。C题和A题约束条件明确,建模路径相对固定。

以下为ABCD题选题建议及初步分析:(要注意的是,本次选题建议会给出每道题目的题目分析、第一问建模过程和推荐算法,然后根据学生不同的专业,针对性给出选题建议)。

综合评价:

  • A:专业性强,适合有工程建模经验的团队,但数据量少,需依赖仿真工具(如COMSOL)。
  • B:开放度高,可结合机器学习和优化算法,适合数据驱动型团队。
  • C:需处理电网拓扑约束,技术文档清晰但计算量大,适合系统建模能力强的团队。
  • D:生物数据复杂且噪声高,需创新性算法设计,适合交叉学科团队

2025深圳杯数学建模挑战赛A-芯片热弹性物理参数估计

A题需估计非均质结构(BGA封装)角点处的等效杨氏模量和热膨胀系数,涉及多材料耦合、热弹性形变与疲劳失效。核心难点在于:

  • 非均质结构建模PCB、焊球、BGA的力学与热学参数差异显著,需建立等效模型;
  • 多物理场耦合:温度循环下的热膨胀与弹性形变需同步分析;
  • 局部参数敏感性:对角点位置的高风险区域进行参数聚焦

建模过程为:

推荐算法:物理信息神经网络(PINN:将热弹性偏微分方程嵌入神经网络损失函数,直接求解等效参数;多尺度强化学习:通过深度Q网络(DQN)优化材料层间交互策略,提升等效参数估计效率;贝叶斯参数反演:结合马尔可夫链蒙特卡洛(MCMC)方法,量化参数不确定性。

大家可以使用这些可视化方法:

  • 3D热力云图:使用ParaViewPyVista展示温度场与应力场的空间分布;
  • 参数敏感性桑基图:通过Plotly动态展示各材料参数对等效模量的贡献路径;
  • 多尺度仿真对比
A题-人才吸引力评价模型研究 在世界各国和全国各地都加大争夺人才的背景下,一个城市要保持其竞争活力和创新力,必须与时俱进地但不盲目地调整相关人才吸引政策。2018年深圳市将加大营商环境改革力度作为一项重要工作,以吸引更多优秀的高新企业和优秀的人才。 吸引人才最关键的是:符合人才的理想,满足人才的需求和愿望。对大多数人来说,首先关心的是“发展前景”:就业实体及其所在城市的前景,不光当前好,未来也不会很快衰落,毕竟人是要考虑“迁移成本”的;其次是收入(报酬或盈利),这方面有绝对(同行业)的和相对(同地域,平价购买力)的两种考量;再次是环境方面的因素:治安,交通,污染,教育、医疗,购物,等等。目前,这方面定性讨论多,定量研究少;定量研究中单因素的多,综合考虑的少;静态考量多,动态(时变)考量少,考虑“不可比”条件的更少。“少”的原因主要是缺乏合适的“数学模型”,使得结论既缺乏说服力,也缺乏可验证性。 你的团队的任务是: 1、通过收集相关数据、建立数学模型,量化地评价深圳市的人才吸引力水平,并尝试就深圳“加大营商环境改革力度若干措施”对人才吸引力水平的影响做出量化评价。 2.针对具体人才类别,深入分析比较深圳市与其他同类城市(如广州、杭州、厦门、苏州等)在人才吸引力上的优势与不足,给出有效提升人才吸引力的可行方案。 3.针对深圳南山区的经济技术发展特点和相关人才政策,同时考虑人才在各个发展阶段的动态需求,量化地评价深圳南山区人才吸引力水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微信公众号:数模0error

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值