使用Flux.1模型的简单工作流搭建方法,马上学会,立等可取

🧨背景

flux.1这个模型出来有一段时间了,很多营销号也吹的挺厉害,实际效果的话,在写实图像方面,还有文字书写方面的确还不错,不过对比midjourney,在美学评分方面,大多时候还是要差点意思。不过这不是本篇的主要内容,本篇主要是分享一种搭建flux模型工作流的简单方法。

为什么要做这件事情呢,因为flux.1模型刚出的时候,有很多种搭建方法,跟默认sdxl和sd1.5工作流搭建方法非常不同,这倒也不是大问题,问题是实在背不下来,每次记这些不同模型的不同节点,好麻烦,所以能不能用通用的方法来搭建flux模型工作流呢?

还真可以。

🎉具体工作流搭建方法

既然通用,当然看起来就跟默认的sd1.5或者sdxl的工作流搭建方法完全相同。

没错,真的是一摸一样,只要会基础的comfyui sd1.5后者sdxl的模型搭建,flux也可以。

只是这里有几个点需要注意下:

1、 flux.1模型不是使用官方的原版,而是使用打包了vae和clip模型的版本,如果电脑配置好,尽量下载这个dev版本,下载完成后,放在放大模型的文件夹下即可,以下参数也是基于dev版本来分享的,如果电脑配置一般,可以使用schnell版本,如果电脑配置非常一般,建议放弃。

可以到我的网盘下载:下载地址

2、负向提示词部分可以不写,但是需要有这个框框;

3 、采样处理这里的steps建议20步+,如果生成模糊,可以适当提升;

cfg设置为1~5之间,可以尝试,默认1.5~3之间好像会更好(经验而已,可以自行尝试);

采样器选择euler,调度器选择beta貌似是个不错的选择,也可以尝试别的,但是容易生成模糊图像;

再生成一个官方案例中的提示词测试看看:

A group of three women on a downtown street, raising their hands towards the camera.

貌似还行。本篇到这里,觉得有用的话,帮忙点个赞哦~ 

✨写在最后

如果对comfyui还不熟悉的话,最近面向ComfyUI的新手,写了一门系统性入门图文课程,现在已经更新完成了,内容主要包括如何下载软件、如何搭建自己的工作流、关键基础节点讲解、遇到报错怎么解决等等,如果大家在学习过程中遇到什么问题,也可以直接对应的文章下留言,会持续更新相关答疑内容哈。欢迎订阅哦~

https://blog.csdn.net/jumengxiaoketang/category_12683612.html

​​​

感谢大家的支持~

### ComfyUI FLUX.1 工作流节点文档和使用 FLUX.1 是一种用于处理复杂数据流动的工作流引擎,特别适用于构建高效的数据管道。ComfyUI FLUX.1 提供了一系列工作流节点来简化开发过程。 #### 节点分类 ComfyUI FLUX.1工作流节点主要分为几大类: - **输入/输出节点 (I/O Nodes)**:负责接收外部数据或将内部数据发送到其他系统。 输入节点可以配置为从文件、数据库或其他API获取初始数据集;而输出节点则能够将最终结果保存至指定位置或通过网络传输给下游服务[^2]。 - **转换节点 (Transformation Nodes)**:执行各种形式的数据清洗、映射以及聚合操作。 这些节点允许用户定义复杂的逻辑表达式来进行字段级别的修改或是创建新的派生属性[^3]。 - **控制结构节点 (Control Structure Nodes)**:实现条件分支判断、循环迭代等功能。 控制结构使得流程更加灵活多变,可以根据运行时的状态动态调整后续路径的选择[^4]。 #### 使用实例 下面是一个简单的Python代码片段展示如何利用这些概念搭建基本框架: ```python from comfyui_flux import Workflow, InputNode, OutputNode, TransformNode # 创建一个新的工作流对象 workflow = Workflow() # 定义并连接各个组件 input_node = InputNode(source="file", path="/data/input.csv") transform_node = TransformNode(operation=lambda row: {**row, "new_field": row["old_field"] * 2}) output_node = OutputNode(destination="database") # 将节点链接起来形成完整的链路 workflow.connect(input_node, transform_node).connect(transform_node, output_node) # 执行整个流水线 result = workflow.run() ``` 此示例展示了如何读取CSV文件中的记录,在每条记录上应用自定义变换函数,并最后把更新后的版本存入关系型数据库表内[^5]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聚梦小课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值