这篇学习文章是在上一篇博客(http://blog.csdn.net/july_sun/article/details/53088673)的基础上,从机器学习的四要素(数据,算法和模型,计算机硬件,机器学习平台)角度出发用实例将各个分类器做一比较,下面就开始这段代码的奇妙旅程吧~~
第一:计算机硬件
本例中只要普通的64位 win系统即可,使用的python是W64的Anaconda,这个python平台的好处是已安装好经常使用的ML包,如sklearn和数据处理包,如numpy和scipy.
第二:机器学习平台
首先,本例中用到了数据处理包numpy对数据进行预处理,当然也可以直接使用scipy包,如果调用scipy就可以直接使用numpy,因为scipy是基于numpy的.
其次,在机器学习模型训练和参数选择时使用万能的sklearn库,里面包含了机器学习的最广泛使用的算法
第三:数据
step1:数据收集
网上有大量的免费数据和文本可以拿来使用,也可以自己简单生成或者是用sklearn的datasets的数据集,亦或是sklearn的make_regression来生成纯数据以及带有噪声的数据,本例中使用的是中国气象数据网2015年的上海的气象数据来让计算机学习上海这一年中的气温和一些因素的关系,即监督学习,其中Y是气温.
代码如下:
import numpy as np
W = ['C:\\Users\\123\\Desktop\\weather\\2015.txt',]
weath