机器学习常用的分类器比较-实例

本文通过实例比较了机器学习中几种常见的分类器,包括Random Forest、Linear Regression、SVM、KNN、SGD和Gradient Boost等。使用中国气象数据进行训练,通过特征选择、交叉验证和错误率分析,发现集成算法在默认参数下表现最优,且强调数据和特征工程的重要性,以及防止过拟合的必要性。
摘要由CSDN通过智能技术生成

这篇学习文章是在上一篇博客(http://blog.csdn.net/july_sun/article/details/53088673)的基础上,从机器学习的四要素(数据,算法和模型,计算机硬件,机器学习平台)角度出发用实例将各个分类器做一比较,下面就开始这段代码的奇妙旅程吧~~

第一:计算机硬件

本例中只要普通的64位 win系统即可,使用的python是W64的Anaconda,这个python平台的好处是已安装好经常使用的ML包,如sklearn和数据处理包,如numpy和scipy.

第二:机器学习平台

首先,本例中用到了数据处理包numpy对数据进行预处理,当然也可以直接使用scipy包,如果调用scipy就可以直接使用numpy,因为scipy是基于numpy的.

其次,在机器学习模型训练和参数选择时使用万能的sklearn库,里面包含了机器学习的最广泛使用的算法

第三:数据

step1:数据收集

网上有大量的免费数据和文本可以拿来使用,也可以自己简单生成或者是用sklearn的datasets的数据集,亦或是sklearn的make_regression来生成纯数据以及带有噪声的数据,本例中使用的是中国气象数据网2015年的上海的气象数据来让计算机学习上海这一年中的气温和一些因素的关系,即监督学习,其中Y是气温.

代码如下:

import numpy as np

W = ['C:\\Users\\123\\Desktop\\weather\\2015.txt',]

weath
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值