计算机视觉--每日作业(1)

今日作业

在实际项目中,一般数据集都是自己采集制作。

1. 一个合格的数据集需要达到哪些要求?

2. 如何选择合适的模型?(即选择模型需要考虑哪些因素?)

3. 如果模型对其中一个类或两个类的表现不太好,有什么解决措施?(可以从数据方面和模型方面分析)

4. 一般是如何根据具体场景进行模型改进的?(即改进的思路通常有哪些?)

请在回答时备注是第几题的答案。题目顺序即为文章标题序号。

参考答案将会发布在知识星球内,可添加本人微信号“FewDesire”邀请加入。添加前请先备注“研究方向-城市-ID”。

回答方式

加入知识星球【CV技术指南(免费版)】,在知识星球中回答。

加入知识星球方式,点击下方链接

https://t.zsxq.com/IA2jAmY

对待作业的正确做法

1. 当作是一个挑战任务,先坚持做个一百天的。

2. 遇到不会的去博客、知乎上找,然后根据别人的文章形成自己的理解并写下正确答案。

对待作业的错误做法

1. 看一眼感觉会做,不管了。

错误原因:每道题都没那么简单,可能自己的理解是有问题的,可能自己知道的部分仅仅是冰山一角,实际还有更多,可能别人会提供更好的理解或更全面的答案。

2. 看一眼觉得不会,等别人写答案,看现成的就是了。

错误原因:别人的答案是别人的理解,自己看一遍不等于自己理解了。这种看现成答案的做法相当于看二手信息,始终不会形成自己的理解能力。

征稿通知:欢迎可以写以下内容的朋友联系我(关注公众号CV技术指南可获取联系方式)。

  1. TVM入门到实践的教程
  2. TensorRT入门到实践的教程
  3. MNN入门到实践的教程
  4. 数字图像处理与Opencv入门到实践的教程
  5. OpenVINO入门到实践的教程
  6. libtorch入门到实践的教程
  7. Oneflow入门到实践的教程
  8. Detectron入门到实践的教程
  9. CUDA入门到实践的教程
  10. caffe源码阅读
  11. pytorch源码阅读
  12. 深度学习从入门到精通(从卷积神经网络开始讲起)
  13. 最新顶会的解读。例如最近的CVPR2022论文。
  14. 各个方向的系统性综述、主要模型发展演变、各个模型的创新思路和优缺点、代码解析等。
  15. 若自己有想写的且这上面没提到的,可以跟我联系。

声明:有一定报酬,具体请联系详谈。若有想法写但觉得自己能力不够,也可以先联系本人(微信号:FewDesire)了解。添加前请先备注“投稿”。

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值