【图像处理与分析(数字图像处理第二版)学习笔记(4.1)】

第四章,频率域图像增强

1,连续和离散傅里叶变换和反变换表达式?

一维连续:

F(u)=\int _{-\infty }^{\infty }f(x)e^{-j2\pi ux}dx                   f(x)=\int _{-\infty }^{\infty }F(u)e^{j2\pi ux}du

二维连续:

F(u,v)=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }f(x,y)e^{-j2\pi (ux+vy)}dxdy            f(x,y)=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }F(u,v)e^{j2\pi (ux+vy)}dudv

一维离散:

F(u)=\frac{1}{M}\sum _{x=0}^{M-1}f(x)e^{-j2\pi ux/M}                f(x)=\sum _{u=0}^{M-1}F(u)e^{j2\pi x/M}

二维离散:

F(u,v)=\frac{1}{M}\frac{1}{N}\sum_{x=0}^{M-1}\sum_{Y=0}^{n-1}f(x,y)e^{-j2\pi (ux/M+vy/N)}            f(x,y)=\sum_{x=0}^{M-1}\sum_{Y=0}^{n-1}f(x,y)e^{j2\pi (ux/M+vy/N)}

2,二维图像离散傅里叶变换性质?

1、时移性

2、频移性

3、均值

4、共轭对称性

|F(u,v)|=|F(-u,-v)|

5、周期性

6、位移不变性是指输入信号的位移对于输出信号不会产生什么影响,只会使得输出信号产生相应的位移。也就是说,如果输入信号为x[n]时,系统产生的输出信号为 y[n],那么对于任意的输入信号和常数s,都有输入信号为x[n+s]时输出信号为y[n+s]成立。通过给变量n加上常数s,可以使波形在水平方向上左移或右移,注意左'+'右'-'

7、线性

8、微分特性

9、卷积定理

10、相关定理

11、相似性

12、几种特殊函数的傅里叶变换

 

 

 

 

 

 

 

参考书籍:

《数字图像处理第二版(冈萨雷斯)》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值